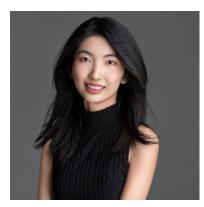
NEURAL RE-RANKING FOR MULTI-STAGE RECOMMENDER SYSTEMS

RecSys Tutorial

Weiwen Liu¹, Jiarui Qin², Bo Chen¹, Ruiming Tang¹

¹Huawei Noah's Ark Lab ²Shanghai Jiao Tong University

Presenter Bio



Weiwen Liu

Researcher Huawei Noah's Ark Lab

Jiarui Qin Ph.D. student

Shanghai Jiao Tong University

Bo Chen Researcher Huawei Noah's Ark Lab

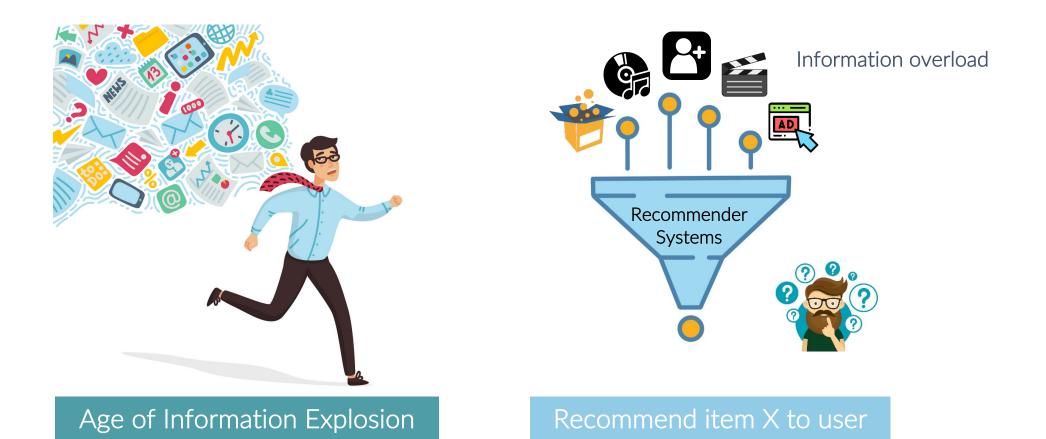
Ruiming Tang

Lab director Huawei Noah's Ark Lab

Outline

• Introduction

- Multi-stage recommender systems
- Neural re-ranking
- Single objective: Accuracy oriented
 - Learning by observed signals
 - Learning by counterfactual signals
 - LibRerank library
- Multi-objective
 - Diversity-aware re-ranking
 - Fairness-aware re-ranking
- Emerging applications
- Summary



Items can be Products, News, Movies, Videos, Friends, etc.

- Recommendation has been widely applied in online services:
 - **E-commerce**, content sharing, social networking ...

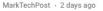
- Recommendation has been widely applied in online services:
 - E-commerce, **content sharing**, social networking ...

News/video/image recommendation

For you

Recommended based on your interests

This Research Paper From Google Research Proposes A 'Message Passing Graph Neural Network' That Explicitly Models Spatio-Temporal Relations



9to5Mac · 21 hours ago

More For you

Construction Fail Compilation 2015 NEW! Papiaani 2,524,529 views • 3 months ago

Papiaani Papiaani 2,672,347 views • 1 ye

- Recommendation has been widely applied in online services:
 - E-commerce, content sharing, **social networking** ...

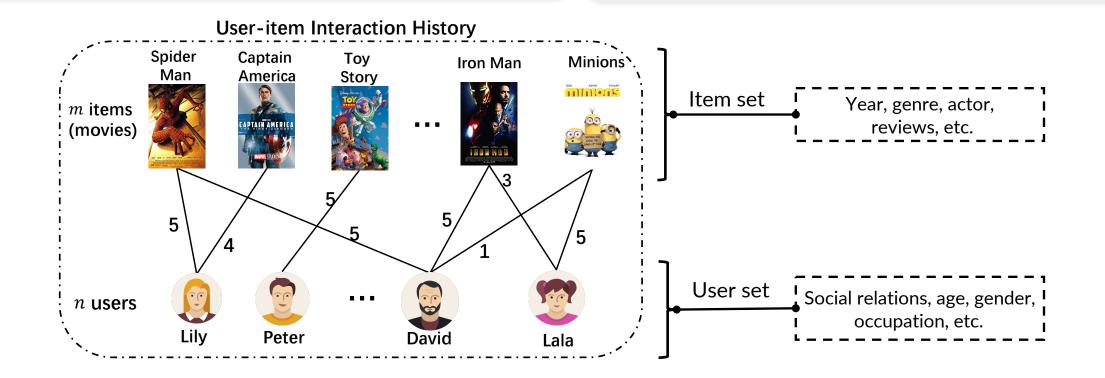
Friend recommendation

Industrial Recommender Systems

INPUT

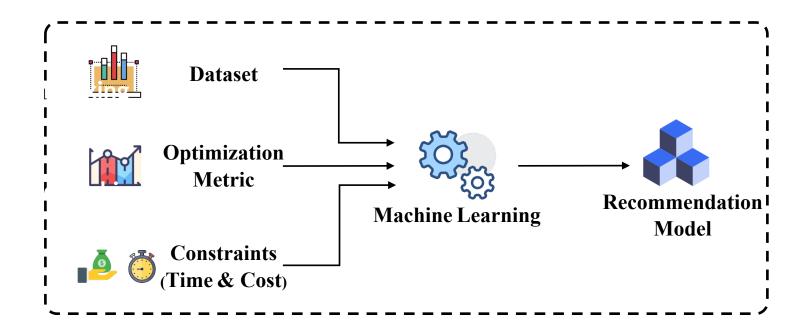
Historical **user-item interactions** or additional side information (e.g., social relations, item's knowledge, etc.)

Predict how likely a user would interact with a target item (e.g., click, view, or purchase) OUTPUT



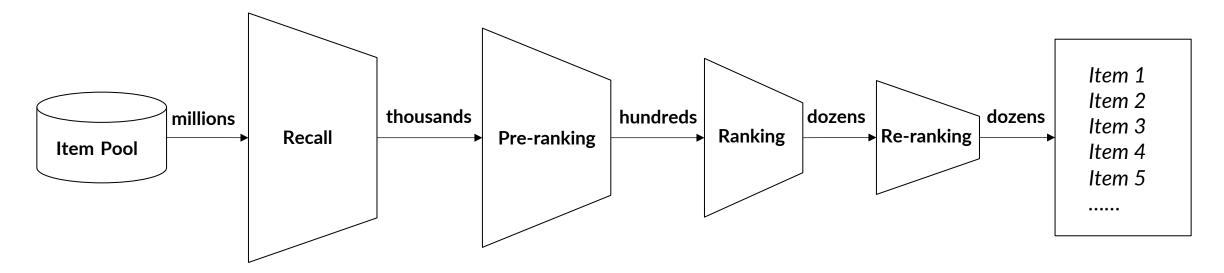
Industrial Recommender Systems

- The success of a RS algorithm is **NOT** limited to the accuracy/ranking quality
 - Business metric: eCPM, CTR, LTV, PV, VV...
 - Resource limitation: computing and memory resource.
 - Data engineering
 - Response latency



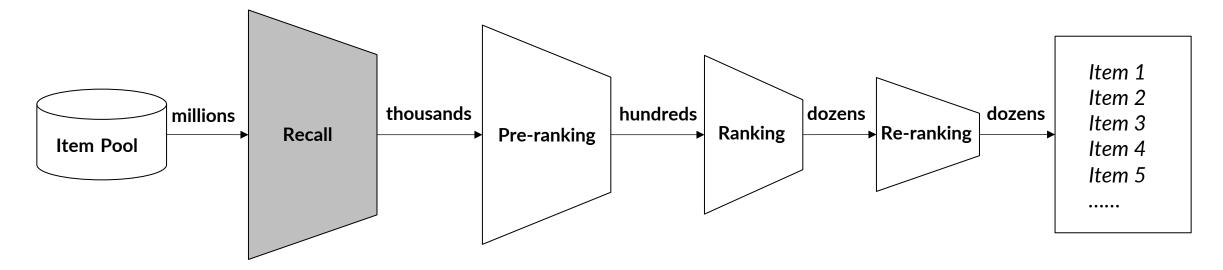
Multi-stage Recommender Systems

- The recommendation task is split into multiple stages
 - Each stage narrows down the relevant items
 - To balance the effectiveness-efficiency trade-off
 - Complex models are more accurate but time consuming
 - Simple models are less accurate but more efficient

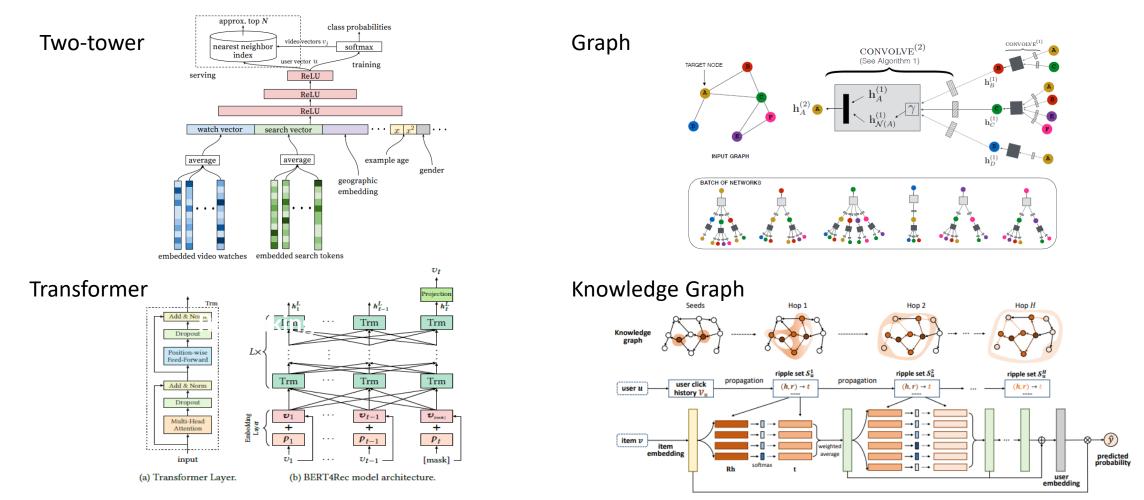


Recall Stage

- Retrieve relevant items from candidate item pool quickly
- Multiple retrieve strategies
 - Rule-based (popular, category, etc.)
 - Model-based
- Multiple objectives (relevance, diversity, etc.)



Recall Stage



Covington, et al. "Deep Neural Networks for YouTube Recommendations." In RecSys, 2016.

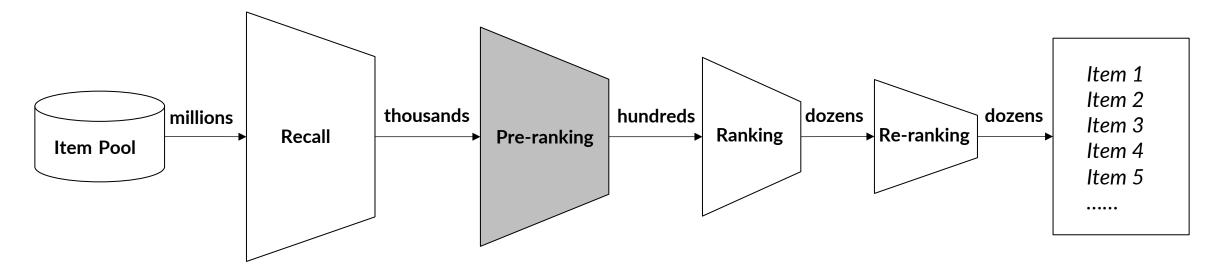
Sun, et al. "BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer." In CIKM, 2019.

Ying, et al. "Graph Convolutional Neural Networks for Web-Scale Recommender Systems." In KDD, 2019.

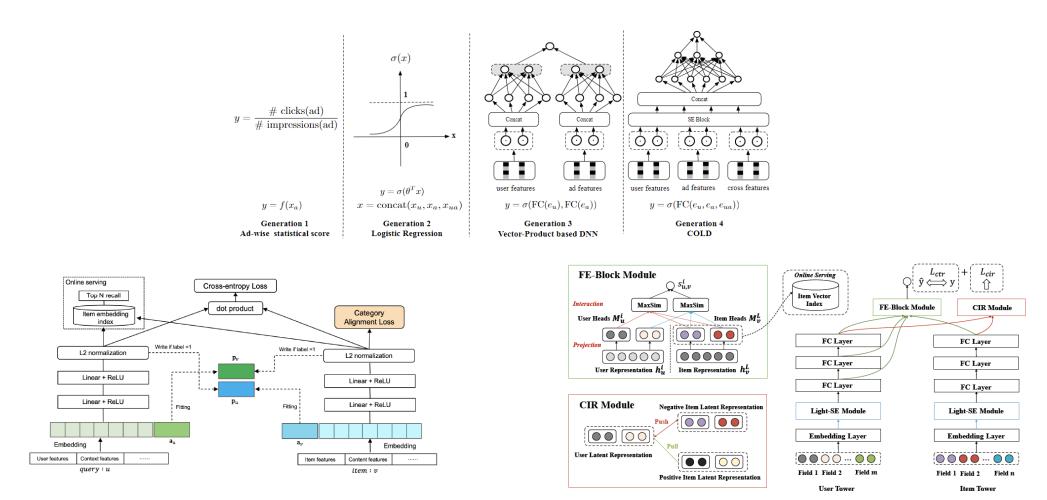
Wangle, et al. "RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems." In WWW, 2018.

Pre-ranking Stage

- Filter irrelevant items efficiently
- Balance between efficiency and effectiveness
- Compared to the ranking stage
 - Fewer features
 - Simpler models



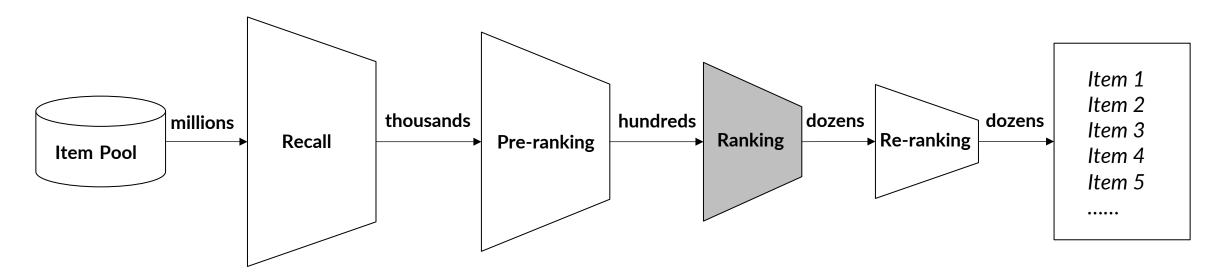
Pre-ranking Stage



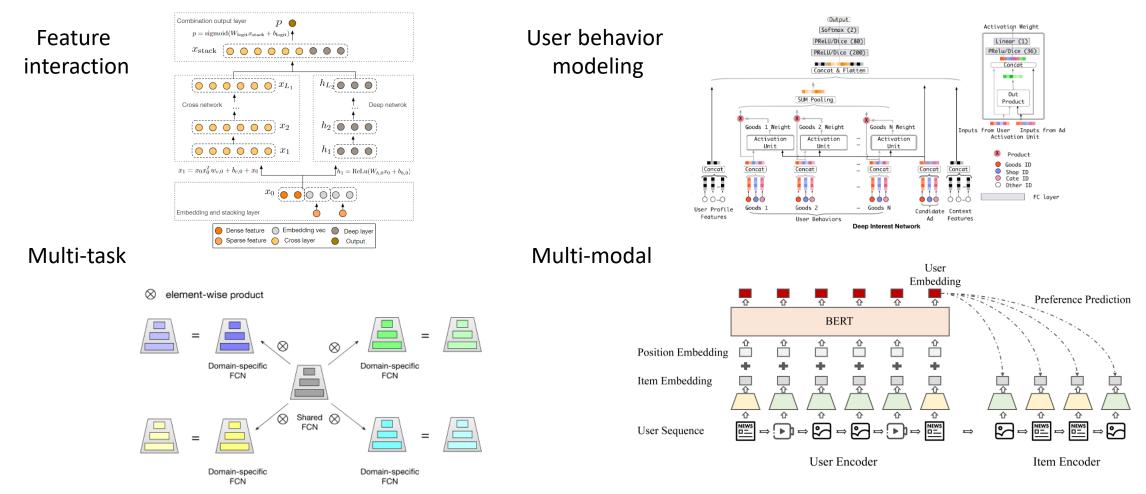
Wang Z, Zhao L, Jiang B, et al. "Cold: Towards the next generation of pre-ranking system". arXiv preprint arXiv:2007.16122, 2020. Yu Y, Wang W, Feng Z, et al. "A dual augmented two-tower model for online large-scale recommendation". In DLP-KDD, 2021. Xiangyang Li, Bo Chen, et al. "IntTower: the Next Generation of Two-Tower Model for Pre-Ranking System", In CIKM, 2022.

Ranking Stage

- Infer user's preference over candidate items accurately
- Compared to the pre-ranking stage
 - More features (including multi-modal features)
 - More complex models
 - Feature interaction, user behavior modeling
 - Multi-task, multi-domain



Ranking Stage



Wang R, Fu B, Fu G, et al. "Deep & cross network for ad click predictions". In ADKDD, 2017

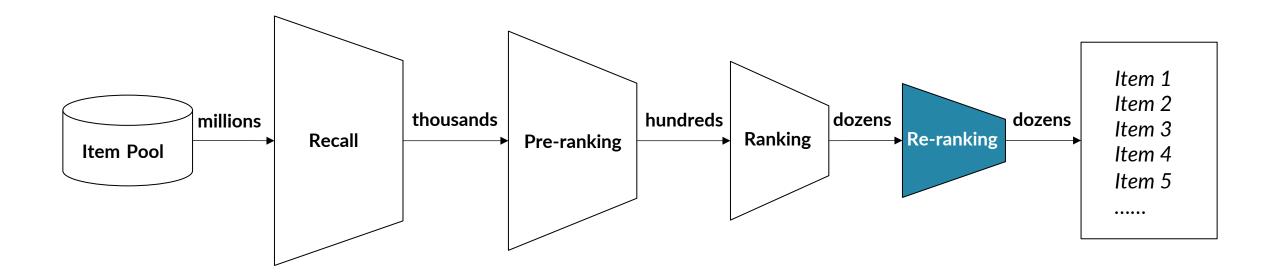
Zhou G, Zhu X, Song C, et al." Deep interest network for click-through rate prediction." In KDD 2018

Sheng, Xiang-Rong, et al. "One model to serve all: Star topology adaptive recommender for multi-domain ctr prediction." In CIKM, 2021.

Li, Yuan, et al. "TransRec: Learning Transferable Recommendation from Mixture-of-Modality Feedback". arXiv preprint arXiv:2206.06190, 2022.

Re-ranking Stage

- Re-arrange the input ranking list according to the objectives
- Consider listwise-context/cross-item interaction
- Multiple objectives (relevance, diversity, etc.)



Re-ranking Stage

• Formulation:

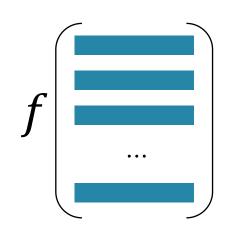
$$\phi_* = \operatorname{argmin}_{\phi} \sum_{R,Y} \mathcal{L}(Y, \phi(R))$$

where R is the input initial list contains n items, $Y \in \mathbb{R}^n$ is the supervision signal, $\mathcal{L}(\cdot)$ is the loss function, ϕ is the ranking function.

Re-ranking vs. Ranking

• Re-ranking

- Multivariate
- Take a list of items at a time
- Cross-item interactions/mutual influences between items
- Finding the best permutation is NP-hard



- Ranking
 - Univariate
 - Take one item at a time
 - Feature-level interactions within each item

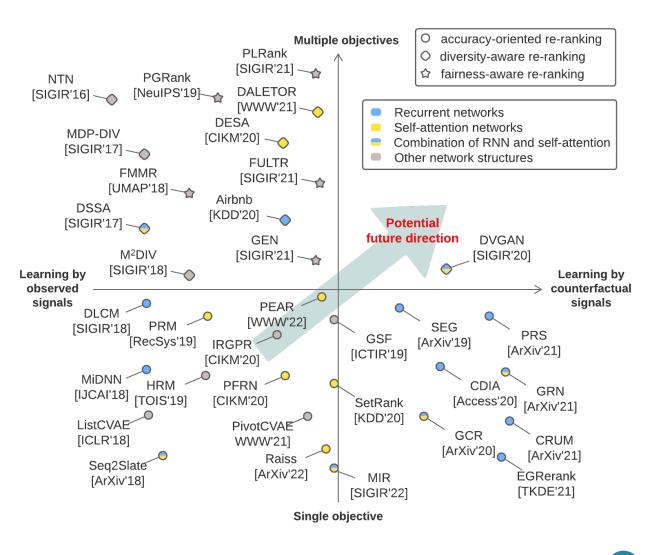
A Taxonomy

• Objectives:

- Accuracy-oriented re-ranking
- Diversity-aware re-ranking
- Fairness-aware re-ranking
- Supervision signals:
 - Learning by observed signals
 - \Rightarrow actual displayed list
 - Learning by counterfactual signals
 ⇒ counterfactual permutations

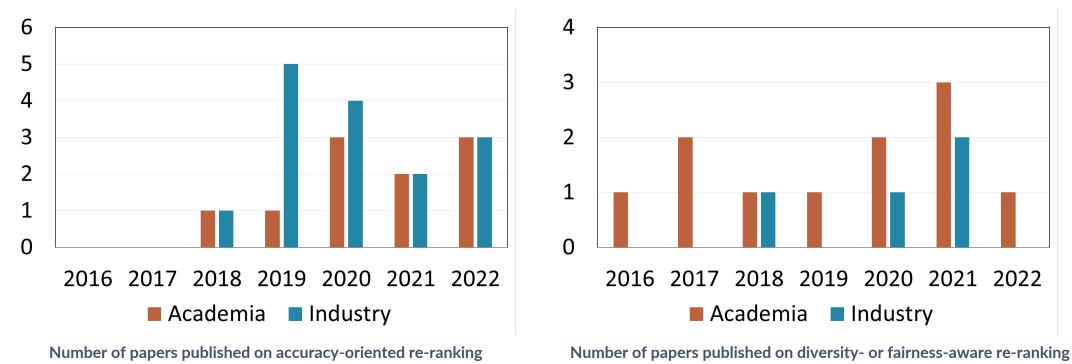
Development characteristics

- Mostly focus on accuracy-oriented re-ranking
- Attention-based network structure becomes popular
- Few works discuss counterfactual signals for multi-objective re-ranking



Some Statistics

- The study of neural re-ranking starts in **2016**
- Till August 2022, there are about 40 papers on neural re-ranking
- Industry focuses more on accuracy-oriented re-ranking
- Academia focuses more on fairness and diversity for re-ranking



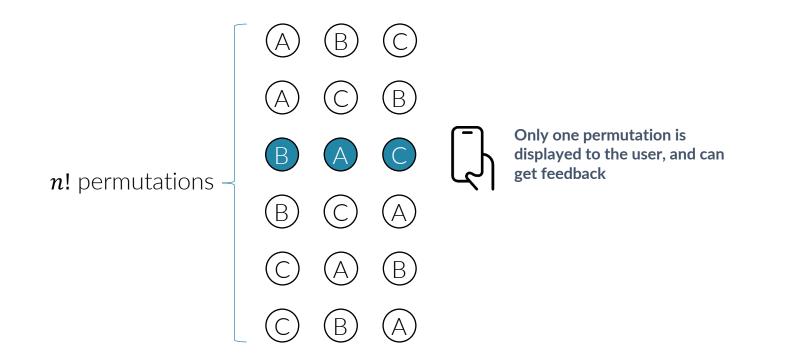
Outline

• Introduction

- Multi-stage recommender systems
- Neural re-ranking
- Single objective: Accuracy oriented
 - Learning by observed signals
 - Learning by counterfactual signals
 - LibRerank library
- Multi-objective
 - Diversity-aware re-ranking
 - Fairness-aware re-ranking
- Emerging applications
- Summary

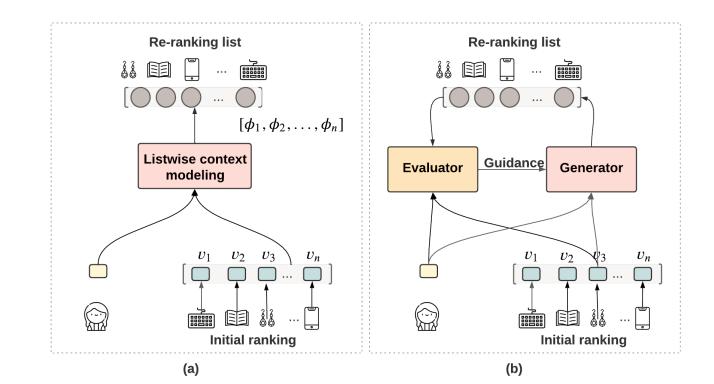
Accuracy-oriented Re-ranking

- Accuracy is the **fundamental** goal for recommender systems.
- Learning by observed signals
 - Trained by actual displayed lists and corresponding feedback provided by users
- Learning by counterfactual signals
 - Item's relevance varies under different permutations
 - Trained by counterfactual permutations and feedback provided by an additional evaluator
 - **Conterfactual lists:** permutations that have not been actually displayed to the users



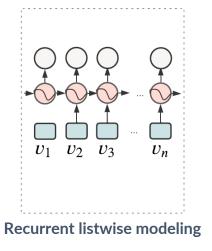
Accuracy-oriented: Network Structure

- Learning by observed signals
 - Embed user and item features into low-dimensional dense vectors
 - Extract the cross-item interactions by the listwise context modeling module
- Learning by counterfactual signals
 - Generator: generate feasible permutations
 - Evaluator: evaluate the listwise utility of each permutation

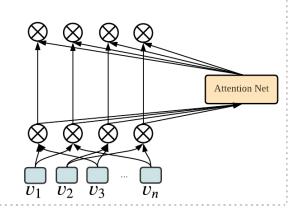


Accuracy-oriented: Learning by Observed Signals

- Simple and straightforward.
- The actual feedback provided by users is less noisy and easier to train.
- Listwise context modeling
 - Recurrent listwise modeling: LSTM, GRU, BiLSTM...
 - Attentive listwise modeling: self-attention, cross-attention...
 - Others: GNN, MLP....

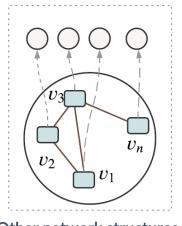


DLCM [Ai et al., 2018] MiDNN [Zhuang et al., 2018] Seq2Slate [Belllo et al., 2018]



Attentive listwise modeling

PRM [Pei et al., 2019] PFRN [Huang et al., 2020] Raiss [Lin et al., 2022] PEAR [Li et al., 2022]

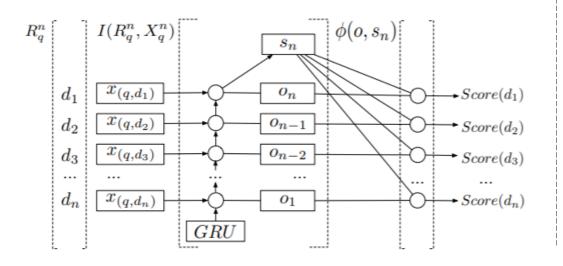


Other network structures

List-CVAE [Jiang et al., 2019] PivotCVAE [Liu et al., 2021] HRM [Li et al., 2019] IRGPR [Liu et al., 2020]

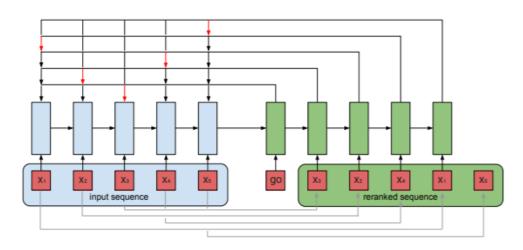
Learning by Observed Signals: Recurrent Listwise Modeling

- DLCM
 - GRU
 - Capture the local ranking context of top items.



• Seq2Slate

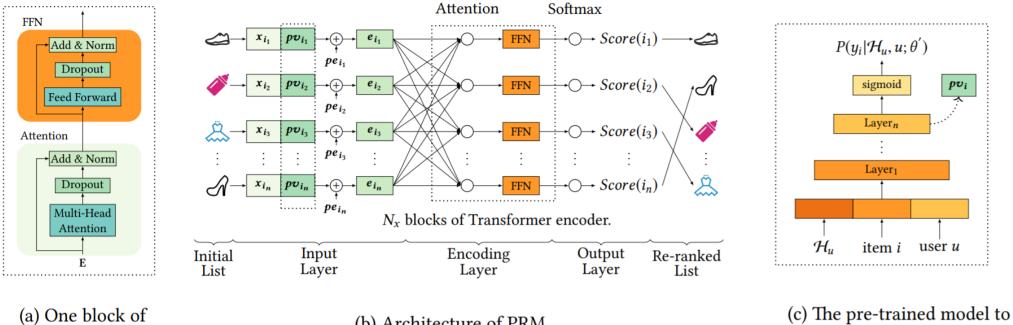
- Pointer network
- At each step, predict the next "best" item.



Learning by Observed Signals: Attentive Listwise Modeling

- Personalized Re-ranking for Recommendation (PRM)
 - Self-attention mechanism
 - The influence degrades along with the encoding distance in RNN-based approaches
 - Captures mutual influences between any pair of items
 - More efficient, can be made parallel
 - Personalized re-ranking
 - Pretrained user embedding

Personalized Re-ranking for Recommendation



Transformer encoder.

(b) Architecture of PRM.

generate $\boldsymbol{pv}_i, i = i_1, ..., i_n$.

Personalized Re-ranking for Recommendation

• Performance on public dataset: Yahoo!

Init. List	Reranking	Yahoo Letor dataset.						
	Refairking	Precision@5(%)	Precision@10(%)	MAP@5(%)	MAP@10(%)	MAP(%)		
SVMRank	SVMRank	50.42	42.25	73.71	68.28	62.14		
	LambdaMART	51.35	43.08	74.94	69.54	63.38		
	DLCM	52.54	43.26	76.52	70.86	64.50		
	PRM-BASE	53.29	43.66	77.62	72.02	65.60		
LambdaMART	SVMRank	50.41	42.34	73.82	68.27	62.13		
	LambdaMART	52.04	43.00	75.77	70.49	64.04		
	DLCM	52.54	43.16	77.81	71.88	65.24		
	PRM-BASE	53.63	43.41	78.62	72.67	65.72		

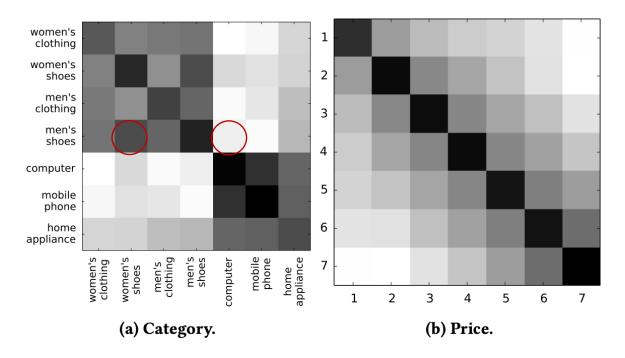
• Online A/B test on an e-commerce platform

Reranking	PV	IPV	CTR	GMV
DLCM	0.77%	1.75%	0.97%	0.13%
PRM-BASE	1.27%	2.44%	1.16%	0.36%
PRM-Personalized-Pretrain	3.01 %	5.69 %	2.6%	6.65%

Changhua Pei, Wenwu Ou, et al. Personalized re-ranking for recommendation. In RecSys, 2019.

Personalized Re-ranking for Recommendation

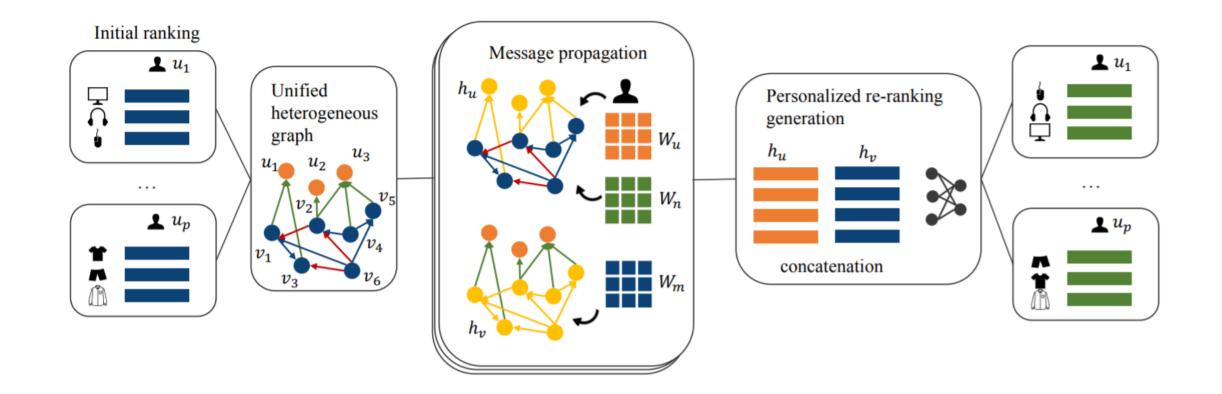
• Visualization of the attention weights



Learning by Observed Signals: Graph Representation Learning

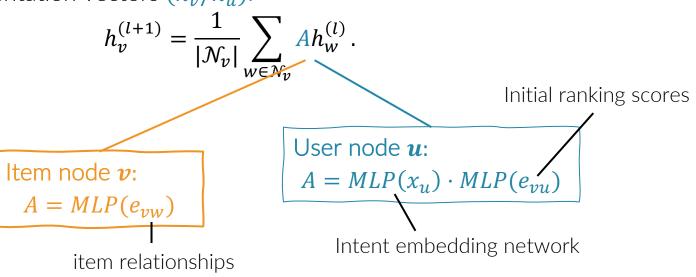
- Personalized re-ranking with item relationships for e-commerce (IRGPR)
 - Item relationships affect the behavior of a user on this list
 - Substitutable: items are interchangeable, co-click
 - **Complementary:** items are bought together by users
 - Personalized user preferences and intents
 - Prices, quality...





• Message propagation steps:

Learn item/user representation vectors (h_v/h_u) .



• Personalized re-ranking:

 $\hat{y}_{uv} = \sigma \left(MLP\left(\left. h_{u}^{(L)} \right| \left| h_{v}^{(L)} \right| \right) \right).$

- Amazon Dataset [McAuley'15]
 - Also Bought (AB): Users bought x also bought y across sessions;
 - Also Viewed (AV): Users viewed x also viewed y;
 - **Bought Together (BT):** Users frequently bought *x* and *y* (*x* and *y* were purchased as part of a single basket);
 - Buy after Viewing (BV): Users who viewed x eventually bought y.

categories	#user	#item	#rating	density (1e-3)	#AB	#AV	#BT	#BV
Video Games	$2,\!390$	$48,\!938$	$148,\!420$	1.27	$1,\!143,\!763$	$170,\!107$	$27,\!460$	117,400
Musical Instruments	565	$65,\!150$	$31,\!806$	0.86	$531,\!379$	480,710	$26,\!955$	$117,\!902$
Movies & TV	$18,\!193$	$200,\!515$	$1,\!800,\!336$	0.49	2,766,430	$172,\!940$	80,924	$224,\!627$
Electronics	$16,\!187$	$424,\!116$	$847,\!556$	0.12	$2,\!550,\!227$	$2,\!823,\!653$	$126,\!166$	769,868
Clothing, Shoes, and Jewelry	9,746	$755,\!510$	463,774	0.06	$2,\!188,\!897$	$5,\!875,\!987$	208,744	$1,\!693$

			_				
		Precision@5	MAP@5	Precision@10	MAP@10	Precision@20	MAP@20
Video Games	DeepFM	0.7506	0.8137	0.7494	0.7983	0.6967	0.7774
	DLCM	0.7554	0.8238	0.7476	0.8047	0.6923	0.7812
	\mathbf{PRM}	0.7651	0.8310	0.7561	0.8081	0.6795	0.7842
	IRGPR	0.8241^{*}	0.8956^{*}	0.7855^{*}	0.8584^{*}	0.7019^{*}	0.8169
	$\mathrm{imp.\%}$	+7.71%	+7.77%	+3.89%	+6.22%	+0.75%	+4.17%
Musical Instruments	DeepFM	0.6056	0.7405	0.5111	0.6893	0.5089	0.5984
	DLCM	0.6111	0.7517	0.5528	0.6957	0.4931	0.6201
	\mathbf{PRM}	0.6233	0.7750	0.5472	0.7152	0.5028	0.6169
msuumenus	IRGPR	0.6751^*	0.8285^{*}	0.5573^{*}	0.7607^{*}	0.5101^{*}	0.7364^{*}
	$\mathrm{imp.\%}$	+8.31%	+6.90%	+0.81%	+6.36%	+0.24%	+18.76%
	DeepFM	0.7398	0.8692	0.6724	0.8102	0.6008	0.7419
	DLCM	0.7745	0.8428	0.7752	0.8239	0.6493	0.8098
Movies & TV	\mathbf{PRM}	0.8077	0.8841	0.7544	0.8577	0.6596	0.8216
	IRGPR	0.8300^{*}	0.8945^{*}	0.7862^{*}	0.8664^*	0.6859^{*}	0.8239
	$\mathrm{imp.\%}$	+2.76%	+1.18%	+1.42%	+1.01%	+3.99%	+0.28%
Electronics	DeepFM	0.8068	0.9349	0.6925	0.8675	0.5947	0.7795
	DLCM	0.8266	0.8984	0.7726	0.8685	0.6311	0.7875
	\mathbf{PRM}	0.8261	0.9185	0.7897	0.8705	0.6490	0.8233
	IRGPR	0.8776^{*}	0.9386^{*}	0.8031^{*}	0.9026^{*}	0.6472	0.8481^{*}
	$\mathrm{imp.\%}$	+6.17%	+0.40%	+1.70%	+3.69%	-0.28%	+3.01%
Clothing, Shoes, and Jewelry	DeepFM	0.5970	0.7859	0.5619	0.7071	0.5281	0.6427
	DLCM	0.6872	0.7915	0.6087	0.7463	0.5402	0.6761
	\mathbf{PRM}	0.6811	0.7989	0.6358	0.7546	$\underline{0.5748}$	0.7000
	IRGPR	0.7057^{*}	0.8426^{*}	0.6381^{*}	0.7878^{*}	0.5628	0.7176^*
	$\mathrm{imp.\%}$	+2.69%	+5.47%	+0.36%	+4.40%	-2.09%	+2.51%

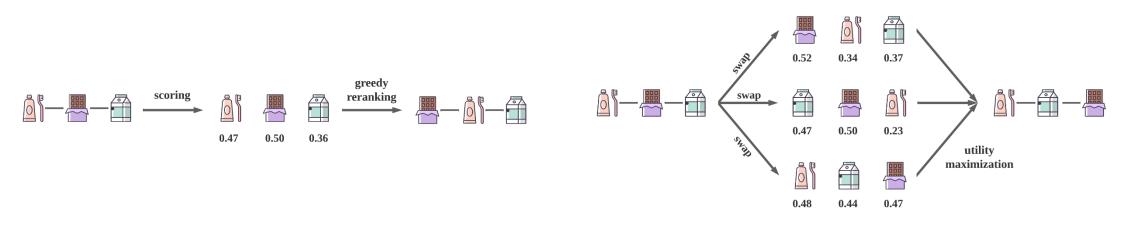
• Performance on public dataset : Amazon

We conduct a two-sided significant test between the proposed IRGPR and the strongest baseline, where * means the p-value is smaller than 0.05. imp.% computes the improvement achieved by IRGPR over the strongest baseline.

Weiwen Liu, Qing Liu, Ruiming Tang, Junyang Chen, Xiuqiang He, and Pheng Heng. Personalized re-ranking with item relationships for e-commerce. In CIKM, 2020.

Learning by Observed Signals: Limitation

- Trained with the only permutation that is displayed to the users.
- Other n! 1 permutation un-explored
- Early-scoring problem
 - Learning by observed signals only models the listwise context of the initial lists
 - Re-ranking operation changes the listwise context

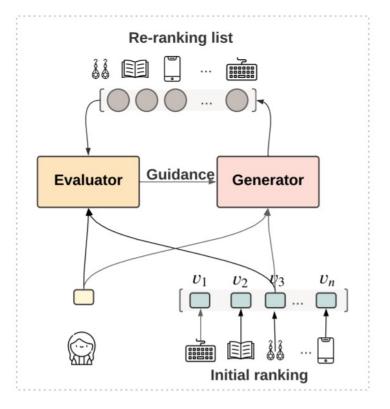


Scoring before re-ranking

Scoring after re-ranking

Accuracy-oriented: Learning by Counterfactual Signals

- Challenges
 - Scoring after reranking: Impractical to ask for feedback for each counterfactual list
 - Exponential time complexity: Combinatorial optimization problem, *n*! Feasible permutations.
- Evaluator-generator paradigm
 - Evaluator: Evaluate listwise utility
 - Generator: Generate feasible permutations



Utility-oriented Re-ranking with Counterfactual Context

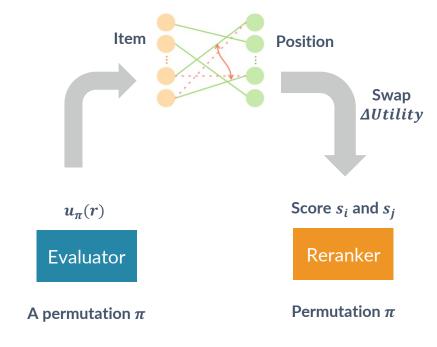
- Position-aware graph embedding
 - Capture item-item and item-position correlations
- Utility-oriented evaluator
 - Bilstm
 - Estimate the listwise utility of any permutation
- Reranker
 - MLP

• Ideal loss:
$$\mathcal{L}(r) = u_{\pi_*}(r) - u_{\pi}(r) \Rightarrow Undifferentiable!$$

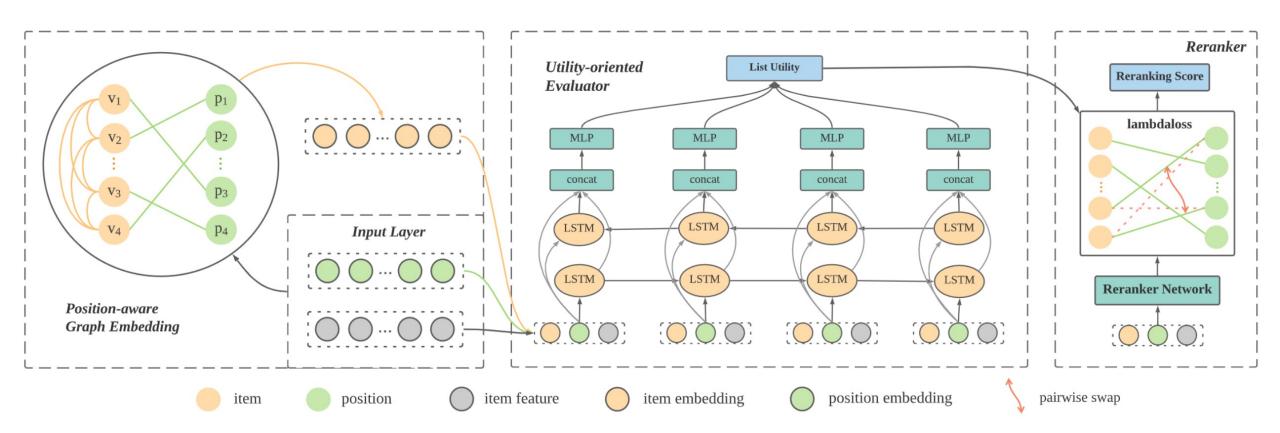
• Pairwise optimization with Lambdaloss

$$\mathcal{L}_{\lambda}(r; \Theta) = \sum_{i=1}^{n} \sum_{j:k_i > k_j} \Delta Utility(i, j) \log(1 + e^{-\sigma(s_i - s_j)})$$

$$\Delta Utility(i,j) = u_{\pi'}(r) - u_{\pi}(r)$$



Utility-oriented Re-ranking with Counterfactual Context: Framework



Xi, Yunjia, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu, Xiuqiang He, and Yong Yu. "Utility-oriented re-ranking with counterfactual context." *arXiv preprint arXiv:2110.09059* (2021).

Utility-oriented Re-ranking with Counterfactual Context: Experiments

	Reranking		Micros	oft MSLR-WE	B10K		Yahoo! LETOR set 1				
Initial Ranker	Model	Relevance-based			Utility	Utility-based		Relevance-based		Utility	-based
	Model	MAP	nDCG@5	nDCG@10	# Click	CTR	MAP	nDCG@5	nDCG@10	# Click	CTR
	None	0.5338	0.4970	0.6775	1.7180	0.1744	0.6935	0.6704	0.8012	2.8978	0.3151
	DLCM	0.5397	0.5052	0.6818	1.7730	0.1768	0.7141	0.6958	0.8170	2.9810	0.3267
DNN	Seq2Slate	0.5470	0.5170	0.6888	1.8046	0.1789	0.7267	0.7006	0.8167	3.0590	0.3327
DININ	PRM	0.5531	0.5232	0.6945	1.7767	0.1808	0.7265	0.7001	0.8178	3.0642	0.3332
	SetRank	0.5404	0.5095	0.6820	1.7563	0.1770	0.7160	0.6973	0.8176	3.0111	0.3275
	URCC	0.5827*	0.5557*	0.7161*	1.8712*	0.1860*	0.7385*	0.7216*	0.8343*	3.0915*	0.3409*
	None	0.5279	0.4982	0.6735	1.7156	0.1720	0.6790	0.6518	0.7914	2.7957	0.3032
	DLCM	0.5365	0.5032	0.6957	1.7816	0.1755	0.7102	0.6898	0.8143	2.9875	0.3219
SVMRank	Seq2Slate	0.5494	0.5177	0.6915	1.7857	0.1788	0.7166	0.6974	0.8192	2.9791	0.3245
5 V IVIRAIIR	PRM	0.5540	0.5224	0.6957	1.8391	0.1798	0.7187	0.7001	0.8206	2.9789	0.3252
	SetRank	0.5377	0.5059	0.6805	1.8126	0.1759	0.7090	0.6885	0.8132	2.9715	0.3214
	URCC	0.5806*	0.5578*	0.7142*	1.8599*	0.1853*	0.7353*	0.7192*	0.8328*	3.0801*	0.3379*
	None	0.5465	0.5124	0.6866	1.7726	0.1769	0.7140	0.6925	0.8188	2.9791	0.3239
	DLCM	0.5506	0.5190	0.6897	1.8003	0.1789	0.7260	0.7075	0.8267	3.0512	0.3318
LambdaMART	Seq2Slate	0.5686	0.5434	0.7050	1.8028	0.1826	0.7331	0.7167	0.8318	3.0570	0.3344
LambuaiviAKI	PRM	0.5699	0.5438	0.7059	1.8266	0.1828	0.7339	0.7163	0.8327	3.0661	0.3351
	SetRank	0.5531	0.5235	0.6911	1.7922	0.1792	0.7282	0.7084	0.8276	3.0539	0.3329
	URCC	0.5855*	0.5629*	0.7165*	1.8688*	0.1857*	0.7360*	0.7197*	0.8335*	3.1116*	0.3392*

• Performance on two public datasets: MSLR and Yahoo!

* denotes statistically significant improvement (measured by t-test with *p*-value<0.05) over all baselines.

Xi, Yunjia, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu, Xiuqiang He, and Yong Yu. "Utility-oriented re-ranking with counterfactual context." *arXiv preprint arXiv:2110.09059* (2021).

Utility-oriented Re-ranking with Counterfactual Context: Experiments

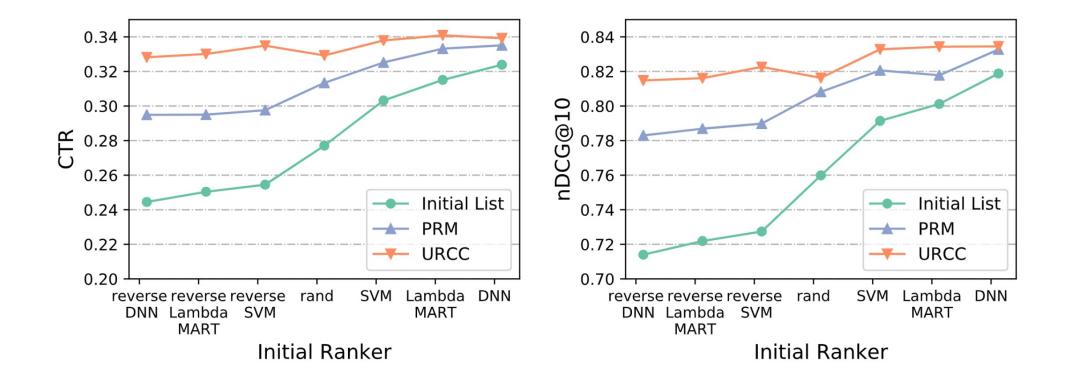
• Performance on real-world dataset: App Store

Reranking Model	nDCG@3	nDCG@5	nDCG@10	nDCG@20	Revenue@3	Revenue@5	Revenue@10	Revenue @20
initial	0.3045	0.3646	0.4281	0.4848	2.461	3.313	4.292	5.304
DLCM	0.2943	0.3631	0.4323	0.4839	2.634	3.478	4.461	5.393
Seq2Slate	0.2861	0.3541	0.4223	0.4776	2.640	3.468	4.466	5.390
PRM	0.3020	0.3648	0.4342	0.4883	2.676	3.478	4.484	5.401
SetRank	0.3077	0.3842	0.4599	0.4993	2.491	3.380	4.421	5.353
URCC	0.3477*	0.4127*	0.4802*	0.5255*	2.688*	3.503*	4.494*	5.405

* denotes statistically significant improvement (measured by t-test with *p*-value<0.05) over all baselines.

Utility-oriented Re-ranking with Counterfactual Context: Experiments

• Sensitivity to the performance of the initial lists



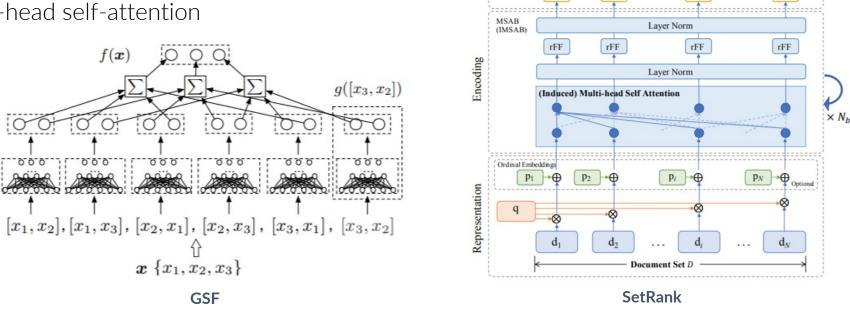
Xi, Yunjia, Weiwen Liu, Xinyi Dai, Ruiming Tang, Weinan Zhang, Qing Liu, Xiuqiang He, and Yong Yu. "Utility-oriented re-ranking with counterfactual context." *arXiv preprint arXiv:2110.09059* (2021).

Beyond Evaluator-Generator Paradigm

- Design a permutation-invariant model ٠
 - Any permutation of the inputs would not change the output ranking

$$f(\{x_1,\ldots,x_M\}) = f(\{x_{\pi(1)},\ldots,x_{\pi(M)}\})$$

- GSF •
 - DNN on all feasible permutations •
- SetRank
 - Multi-head self-attention •



Ranking

Permutation π

Sort

rFF,

rFF,

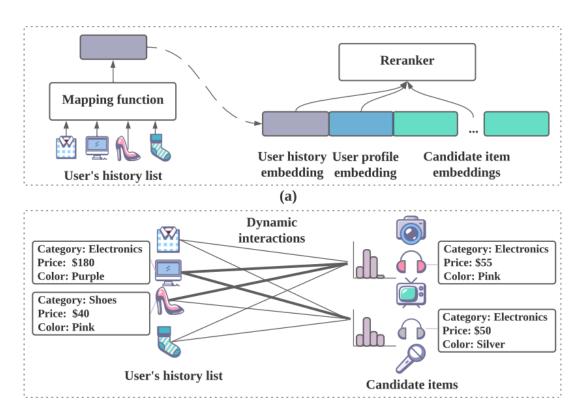
rFF,

rFF₁

Qingyao Ai, Xuanhui Wang, et al. Learning groupwise multivariate scoring functions using deep neural networks. In ICTIR, 2019. Liang Pang, Jun Xu, et al. Setrank: Learning a permutation-invariant ranking model for information retrieval. In SIGIR, 2020.

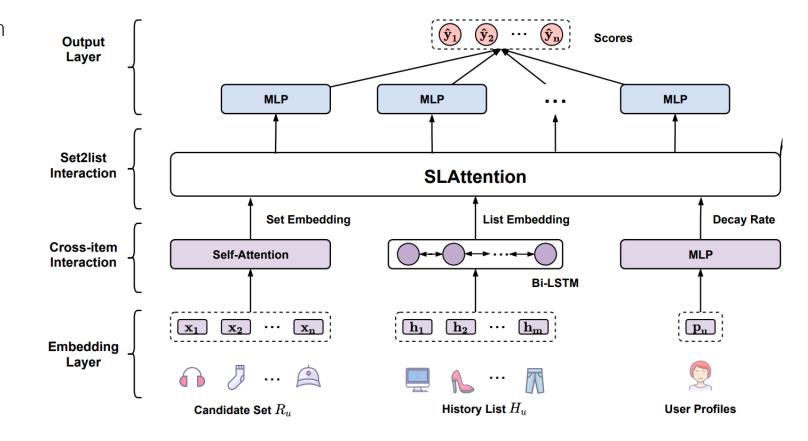
Multi-Level Interaction Reranking with User Behavior History

- Exploit personalized preferences from user behavior history in a permutation-invariant model
 - The items in history contribute **differently** to reranking.
 - Dynamic interaction between user history and candidate items
 - Users' interests are evolving over time.
 - Long-term interest
 - Short-term interest



Multi-Level Interaction Reranking with User Behavior History: Framework

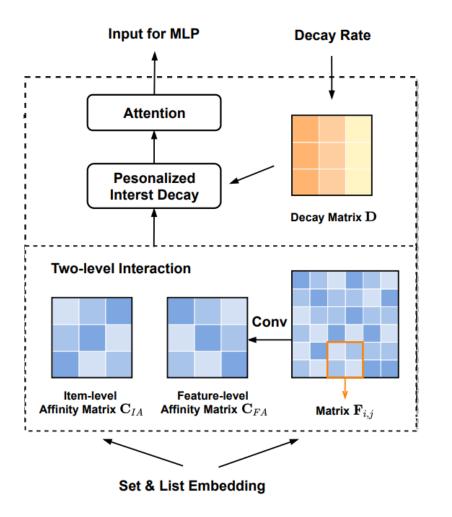
- Candidates \Rightarrow set, user behavior history \Rightarrow list
- Cross-item interaction
 - Intra-set : self-attention
 - Intra-list : Bi-LSTM
- Set2List interaction
 - SLAttention



Multi-Level Interaction Reranking with User Behavior History: SLAttention

- Dynamic interaction between set and list
- Set embedding *S*, list embedding *L*
- Item & feature-level affinity matrix

 $C_{IA} = \tanh(SW_{IA}L^{T})$ $F_{i,j} = \tanh\left(E_{S}^{i}W_{FA}(E_{L}^{j})^{T}\right)$ $C_{FA}(i,j) = \sum_{s=1}^{k}\sum_{t=1}^{k}F_{i,j}(s,t)W_{c}(s,t)$ $C_{A} = C_{IA} + C_{FA}$

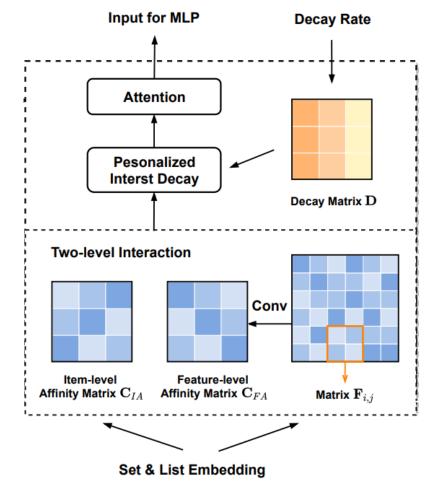


Multi-Level Interaction Reranking with User Behavior History: SLAttention

- Personalized interest decay $\theta_u = g(p_u), \quad d = e^{-\theta_u t_u}$ $\mathcal{C} = \mathcal{C}_A + \mathcal{C}_A \odot D$
- Attention

٠

- $Q_{S} = \tanh(SW_{S} + C(LW_{l}))$ $Q_{L} = \tanh(SW_{S}C)$ $A_{S} = softmax(Q_{S})$ $A_{L} = softmax(Q_{L})$ $\hat{S} = A_{S}S, \qquad \hat{L} = A_{L}L$
- The model is proved to be **permutation-invariant**



Multi-Level Interaction Reranking with User Behavior History: Experiment

- Performance on public two datasets: PRM public and Ad.
 - Ranking metrics: MAP, NDCG, deNDCG
 - Utility metric: Utility

					PRM	Public							А	d			
Ranker	Reranker		0	910			()	20			(<u>@</u> 5			(@10	
		MAP	NDCG	deNDCG	Utility	MAP	NDCG	deNDCG	Utility	MAP	NDCG	deNDCG	Utility	MAP	NDCG	deNDCG	Utility
	initial	0.1929	0.2290	0.2298	1.2289	0.1976	0.3318	0.3324	1.7986	0.5930	0.6660	0.6654	2.2416	0.6028	0.6941	0.6940	2.3574
	MIDNN	0.2986	0.3399	0.3124	1.3267	0.2907	0.4200	0.3965	1.8418	0.5991	0.6705	0.6710	2.2174	0.6093	0.6990	0.6994	2.3345
	DLCM	0.3002	0.3422	0.3146	1.3431	0.2919	0.4227	0.3991	1.8426	0.5998	0.6715	0.6715	2.3126	0.6094	0.6992	0.6995	2.4257
DIN	GSF	0.2989	0.3402	0.3127	1.3283	0.2909	0.4199	0.3964	1.8418	0.5995	0.6710	0.6713	2.2341	0.6097	0.6993	0.6996	2.3516
	PRM	0.3026	0.3446	0.3161	1.3423	0.2940	0.4252	0.4011	1.8653	0.6014	0.6722	0.6725	2.2350	0.6117	0.7006	0.7011	2.3493
	SetRank	0.3003	0.3413	0.3118	1.3192	0.2919	0.4207	0.3951	1.8320	0.6007	0.6718	0.6719	2.2457	0.6101	0.6995	0.6997	2.3624
	MIR	0.3087*	0.3511*	0.3239*	1.3906*	0.2989*	0.4310*	0.4078*	1.9064*	0.6068*	0.6768*	0.6771*	2.3807*	0.6164*	0.7044	0.7048*	2.4918*
	initial	0.1746	0.2057	0.2093	1.1572	0.1815	0.3079	0.3110	1.7176	0.5864	0.6607	0.6603	2.1978	0.5964	0.6889	0.6888	2.3142
	MIDNN	0.2982	0.3394	0.3113	1.3276	0.2905	0.4193	0.3948	1.8409	0.5975	0.6694	0.6697	2.2192	0.6074	0.6972	0.6975	2.3353
	DLCM	0.2975	0.3383	0.3094	1.3120	0.2896	0.4185	0.3933	1.8293	0.5991	0.6708	0.6712	2.3236	0.6090	0.6983	0.6987	2.4157
SVMRank	GSF	0.2990	0.3404	0.3120	1.3287	0.2910	0.4200	0.3952	1.8417	0.5987	0.6702	0.6704	2.2354	0.6085	0.6980	0.6983	2.3486
	PRM	0.3005	0.3414	0.3116	1.3175	0.2919	0.4210	0.3951	1.8328	0.5997	0.6705	0.6705	2.1679	0.6098	0.6988	0.6990	2.2842
	SetRank	0.3002	0.3418	0.3120	1.3211	0.2920	0.4209	0.3949	1.8320	0.5980	0.6698	0.6701	2.3118	0.6079	0.6975	0.6979	2.4237
	MIR	0.3084*	0.3514*	0.3230*	1.3866*	0.2993*	0.4308*	0.4059*	1.8989*	0.6056*	0.6760*	0.6765*	2.3683*	0.6151*	0.7029	0.7033*	2.4776*
	initial	0.1820	0.2139	0.2158	1.1569	0.1879	0.3155	0.3174	1.7188	0.5897	0.6633	0.6629	2.1783	0.5997	0.6915	0.6915	2.2948
	MIDNN	0.2984	0.3396	0.3127	1.3269	0.2906	0.4196	0.3967	1.8427	0.5979	0.6697	0.6704	2.2329	0.6077	0.6975	0.6980	2.3481
	DLCM	0.2984	0.3394	0.3118	1.3149	0.2906	0.4190	0.3954	1.8295	0.5995	0.6710	0.6712	2.2801	0.6093	0.6988	0.6990	2.3739
LambdaMART	GSF	0.2988	0.3400	0.3130	1.3293	0.2909	0.4200	0.3969	1.8441	0.5991	0.6706	0.6710	2.2735	0.6092	0.6986	0.6990	2.3873
	PRM	0.3002	0.3415	0.3129	1.3156	0.2919	0.4210	0.3966	1.8299	0.6004	0.6714	0.6712	2.2171	0.6107	0.6996	0.6997	2.3327
	SetRank	0.2999	0.3413	0.3132	1.3210	0.2917	0.4206	0.3966	1.8333	0.6001	0.6716	0.6715	2.2789	0.6098	0.6991	0.6993	2.3923
	MIR	0.3083*	0.3511*	0.3247*	1.3907*	0.2991*	0.4301*	0.4073*	1.8998*	0.6060*	0.6762*	0.6765*	2.3685*	0.6157*	0.7037	0.7042*	2.4799*

* denotes statistically significant improvement (measured by t-test with p-value < 0.05) over the best baseline.

Multi-Level Interaction Reranking with User Behavior History: Experiment

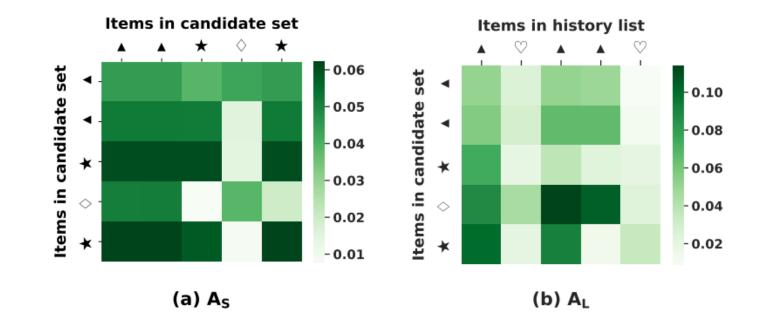
• Performance on a real-world dataset: App Store

Model		@5			@10			
	MAP	NDCG	deNDCG	Utility	MAP	NDCG	deNDCG	Utility
init	0.1855	0.3549	0.3474	2.4671	0.1809	0.4260	0.4200	3.3646
MIDNN	0.2352	0.4349	0.4340	3.5379	0.2293	0.5014	0.5008	4.6408
DLCM	0.3205	0.5074	0.5112	3.9615	0.3145	0.5588	0.5623	4.8690
GSF	0.2271	0.4253	0.4249	3.4690	0.2213	0.4941	0.4942	4.6046
PRM	0.3281	0.5132	0.5166	3.9945	0.3222	0.5662	0.5685	4.9185
SetRank	0.2591	0.4537	0.4569	3.6234	0.2533	0.5168	0.5194	4.6845
MIR	0.3449*	0.5301*	0.5337*	4.0964*	0.3396*	0.5815*	0.5838*	5.0014*

* denotes statistically significant improvement (measured by t-test with p-value < 0.05) over the best baseline.

Multi-Level Interaction Reranking with User Behavior History: Experiment

- Visualization of the attention coefficient obtained in SLAttention
 - The weights of the same type of items are similar in most cases, such as triangular items.



Qualitative Model Comparison

	Listwise context modeling	Optimization	Personalization	Complexity
DLCM [2018]	GRU	AttRank	NP	$\mathcal{O}(n)$
MiDNN[2018]	LSTM	CE	D	$\mathcal{O}(n)$
ListCVAE [2018]	CVAE	KL	NP	$\mathcal{O}(n)$
Seq2Slate [2018]	PointerNet	CE	NP	$\mathcal{O}(n^2)$
HRM [2019]	Similarity	Hinge	D	$\mathcal{O}(hn+h^2)$
PRM [2019]	Self-attention	CE	D	$\mathcal{O}(n^2)$
IRGPR [2020b]	GNN	BPR	М	$\mathcal{O}(n)$
PFRN [2020]	Self-attention	CE	D	$\mathcal{O}(n^2 + h^2)$
PivotCVAE [2021]	CVAE	KL	NP	$\mathcal{O}(n)$
Raise [2022]	Self-attention	CE	Μ	$\mathcal{O}(n^2)$
PEAR [2022]	Self-/cross-attention	CE	D	$\mathcal{O}((n+h)^2)$
GSF [2019]	DNN	CE	NP	$O(\frac{mn!}{(n-m)!})$
SEG [2019]	E: BiGRU G: GRU	MSE/Q-learning	D	$\mathcal{O}(n^2)$
SetRank [2020]	Self-attention	AttRank	NP	$\mathcal{O}(n^2)$
CDIA [2020]	E: LSTM G: LSTM	Policy gradient	D	$\mathcal{O}(n^2)$
GCR [2020]	E: BiGRU+attention G: GRU	PPO-exploration	D	$\mathcal{O}(n^2)$
PRS [2021a]]	E: BiLSTM G: Beam search	_	D	$\mathcal{O}(n^2)$
GRN [2021b]	E: BiLSTM+attention G: GRU+attention+	Policy gradient	D	$\mathcal{O}(n^2)$
CRUM [2021]	PointerNet E: BiLSTM+GNN	LambdaLoss	D	$\mathcal{O}(n)$
	G: MLP	LunouLoss		
EGRerank [2021]	E: LSTM G: LSTM	PPO	D	$\mathcal{O}(n^2)$
MIR [2022]	BiLSTM+attention	CE	D	$\mathcal{O}((n+h)^2)$

Quantitative Model Comparison

• LibRerank: a neural re-ranking library to automates the re-ranking experimentation

		Ad				PRM Public			
	MAP@5	NDCG@5	MAP@10	NDCG@10	MAP@10	NDCG@10	MAP@20	NDCG@20	
Init [2010]	0.6037	0.6840	0.6075	0.6990	0.1842	0.2178	0.1901	0.3202	
MiDNN [2018] GSF [2019] EGRerank [2021] DLCM [2018] SetRank [2020] PRM [2019]	$\begin{array}{c} 0.6080 \\ 0.6090 \\ 0.6092 \\ 0.6126 \\ 0.6132 \\ 0.6140 \end{array}$	$\begin{array}{c} 0.6876 \\ 0.6883 \\ 0.6890 \\ 0.6914 \\ 0.6917 \\ 0.6923 \end{array}$	$\begin{array}{c} 0.6117\\ 0.6126\\ 0.6126\\ 0.6162\\ 0.6168\\ 0.6178\end{array}$	$\begin{array}{c} 0.7021 \\ 0.7028 \\ 0.7029 \\ 0.7055 \\ 0.7060 \\ 0.7066 \end{array}$	$\begin{array}{c} 0.3069 \\ 0.3060 \\ 0.3075 \\ 0.3082 \\ 0.3094 \\ 0.3096 \end{array}$	$\begin{array}{c} 0.3482 \\ 0.3459 \\ 0.3502 \\ 0.3500 \\ 0.3515 \\ 0.3516 \end{array}$	$\begin{array}{c} 0.2977 \\ 0.2968 \\ 0.2985 \\ 0.2991 \\ 0.3002 \\ 0.3003 \end{array}$	$\begin{array}{c} 0.4265\\ 0.4241\\ 0.4286\\ 0.4287\\ 0.4297\\ 0.4301\end{array}$	

Outline

• Introduction

- Multi-stage recommender systems
- Neural re-ranking
- Single objective: Accuracy oriented
 - Learning by observed signals
 - Learning by counterfactual signals
 - LibRerank library
- Multi-objective
 - Diversity-aware re-ranking
 - Fairness-aware re-ranking
- Emerging applications
- Summary

Diversity-aware Re-ranking

- Diversity
 - Measure the dissimilarity or topic coverage of a re-ranking list
- Accuracy-diversity tradeoff
 - Trade-off parameter
 - Optimize a specific metric that combines accuracy and diversity like α -NDCG
- Implicit approach
 - Query subtopic is not available at inference
 - M²-DIV [Feng et al., 2018], DALETOR [Yan et al., 2021]
- Explicit approach
 - Query subtopic is assumed to be available at inference
 - DSSA [Jiang et al., 2017], DVGAN [Liu et al., 2020], DESA [Qin et al., 2020]...

- Motivation
 - Directly optimize the diversity-aware metric by a differentiable loss
 - "Score-and-sort" instead of "next document"
- Major solution
 - Approximate the diversity-aware metric in a soft version
 - Propose a listwise scoring function

- Differentiable approximate diversity-aware metric as training objective (e.g., α -NDCG)
 - Original format

$$\alpha \text{-DCG} = \sum_{i=1}^{n} \sum_{l=1}^{m} \frac{y_{il} (1-\alpha)^{c_{li}}}{\log_2 (1+r_i)}, \qquad c_{li} = \sum_{j:r_j \le r_i} y_{jl} . \qquad \alpha \text{-NDCG} = \frac{\alpha \text{-DCG}}{\alpha \text{-DCG}_{\text{opt}}}.$$

• Transformed format

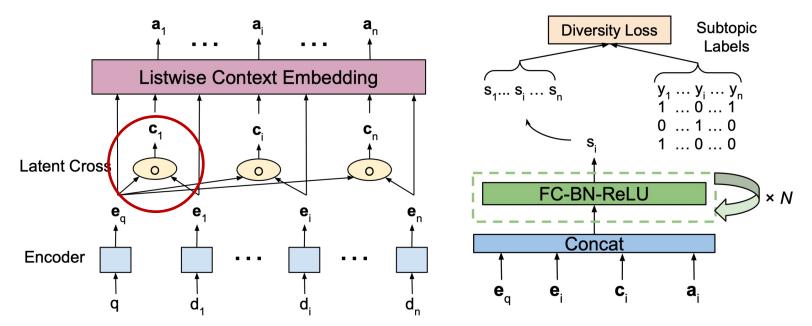
$$r_{i} = 1 + \sum_{j \neq i} \text{sigmoid}\left(\frac{s_{j} - s_{i}}{T}\right) = \frac{1}{2} + \sum_{j} \frac{1}{1 + \exp\left(\frac{s_{i} - s_{j}}{T}\right)},$$

$$c_{li} = \sum_{j \neq i} y_{jl} \cdot \text{sigmoid}\left(\frac{s_{j} - s_{i}}{T}\right) = \sum_{j \neq i} \frac{y_{jl}}{1 + \exp\left(\frac{s_{i} - s_{j}}{T}\right)} - \frac{y_{il}}{2}$$

$$\mathcal{L}_{\alpha-\text{DCG}}(\{s_{i}^{q}\}) = -\frac{1}{|Q|} \sum_{q \in Q} \sum_{i=1}^{n} \sum_{l=1}^{m} \frac{y_{il}^{q}(1 - \alpha)^{C_{li}^{q}}}{\log_{2}(1 + R_{i}^{q})},$$

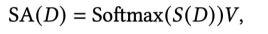
Diversification-Aware Learning to Rank using Distributed Representation. Yuan et al. WWW 2021.

- Neural Architecture
 - Distributed representation
 - Query-doc cross feature (latent cros $\mathbf{c}_i = \mathbf{e}_i \circ \mathbf{e}_q$.
 - Listwise context embedding
 - Document interaction network (DIN)
 - Output layer

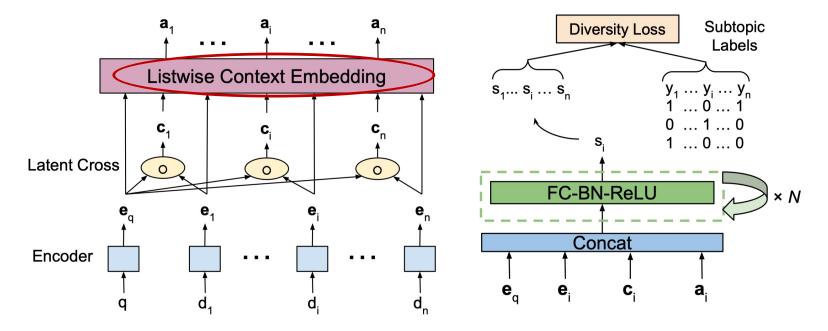


- Neural Architecture
 - Distributed representation
 - Query-doc cross feature (latent cross)
 - Listwise context embedding
 - Document interaction network (DIN)

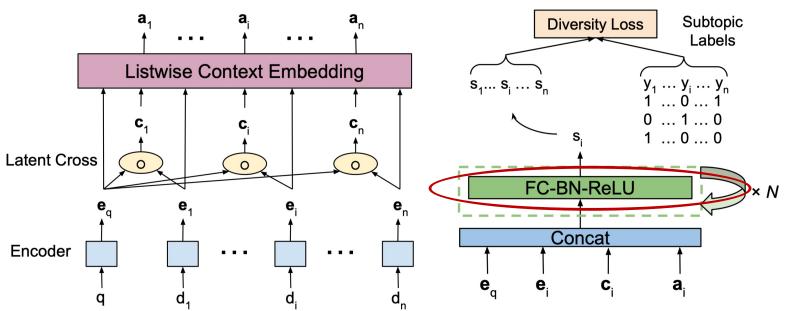
• Output layer



 $MHSA(D) = concat_{h \in [H]} [SA_h(D)]W_{out} + b_{out},$



- Neural Architecture
 - Distributed representation
 - Query-doc cross feature (latent cross)
 - Listwise context embedding
 - Document interaction network (DIN) $\mathbf{a}_i = \text{DIN}_i(\{\text{concat}(\mathbf{e}_q, \mathbf{e}_j, \mathbf{c}_j)\})$
 - Output layer



 $s_{\text{DALETOR}}(q, \{d_i\}) = \{s(\text{concat}(\mathbf{e}_q, \mathbf{e}_i, \mathbf{c}_i, \mathbf{a}_i))\}.$

Diversification-Aware Learning to Rank using Distributed Representation. Yuan et al. WWW 2021.

Overall Performance

Method	α -NDCG@5	α -NDCG@10	ERR-IA@5	ERR-IA@10	
MMR	0.2753	0.2979	0.2005	0.2309	
xQuAD	0.3165	0.3941	0.2314	0.2890	
PM-2	0.3047	0.3730	0.2298	0.2814	
SVM-DIV	0.3030	0.3699	0.2268	0.2726	
R-LTR	0.3498	0.4132	0.2521	0.3011	
PAMM	0.3712	0.4327	0.2619	0.3029	
NTN-DIV	0.3962	0.4577	0.2773	0.3285	
MDP-DIV	0.4189	0.4762	0.2988	0.3494	
M ² DIV	0.4429	0.4839	0.3445	0.3658	
DNN(softmax)	0.4280	0.4676	0.3293	0.3496	
DNN(R-LTR)	0.4149	0.4517	0.3265	0.3454	
DNN-LC(α -DCG)	0.4968^{*}	0.5322*	0.3868*	0.4068^{*}	
DIN-LC(α -DCG)	0.5009*	0.5294^{*}	0.3942*	0.4119*	
	MMR xQuAD PM-2 SVM-DIV R-LTR PAMM NTN-DIV MDP-DIV M ² DIV DNN(softmax) DNN(R-LTR) DNN-LC(α-DCG)	MMR 0.2753 xQuAD 0.3165 PM-2 0.3047 SVM-DIV 0.3030 R-LTR 0.3498 PAMM 0.3712 NTN-DIV 0.3962 MDP-DIV 0.4189 M ² DIV 0.4280 DNN(softmax) 0.4149 DNN-LC(α-DCG) 0.4968*	MMR 0.2753 0.2979 xQuAD 0.3165 0.3941 PM-2 0.3047 0.3730 SVM-DIV 0.3030 0.3699 R-LTR 0.3498 0.4132 PAMM 0.3712 0.4327 NTN-DIV 0.3962 0.4577 MDP-DIV 0.4189 0.4762 M ² DIV 0.4429 0.4839 DNN(softmax) 0.4280 0.4676 DNN(R-LTR) 0.4149 0.4517 DNN-LC(α -DCG) 0.4968^* 0.5322^*	MMR 0.2753 0.2979 0.2005 xQuAD 0.3165 0.3941 0.2314 PM-2 0.3047 0.3730 0.2298 SVM-DIV 0.3030 0.3699 0.2268 R-LTR 0.3498 0.4132 0.2521 PAMM 0.3712 0.4327 0.2619 NTN-DIV 0.3962 0.4577 0.2773 MDP-DIV 0.4189 0.4762 0.2988 M ² DIV 0.4429 0.4839 0.3445 DNN(softmax) 0.4280 0.4676 0.3293 DNN(R-LTR) 0.4149 0.4517 0.3265 DNN-LC(α -DCG) 0.4968^* 0.5322^* 0.3868^*	MMR0.27530.29790.20050.2309xQuAD0.31650.39410.23140.2890PM-20.30470.37300.22980.2814SVM-DIV0.30300.36990.22680.2726R-LTR0.34980.41320.25210.3011PAMM0.37120.43270.26190.3029NTN-DIV0.39620.45770.27730.3285MDP-DIV0.41890.47620.29880.3494M²DIV0.44290.48390.34450.3658DNN(softmax)0.42800.46760.32930.3496DNN(R-LTR)0.41490.45170.32650.3454DNN-LC(α-DCG)0.4968* 0.5322 *0.3868*0.4068*

• Benefits of the α -DCG loss

Method	α-NDCG@5	α -NDCG@10	ERR-IA@5	ERR-IA@10
DNN(R-LTR)	0.4149	0.4517	0.3265	0.3454
DNN(α -DCG)	0.4614^{*}	0.5005^{*}	0.3633	0.3838^{*}
DNN-LC(R-LTR)	0.4451	0.4842	0.3483	0.3690
DNN-LC(α -DCG)	0.4968 [†]	0.5322^\dagger	0.3868 [†]	0.4068^\dagger

• Latent cross features & listwise scoring

Method	α-NDCG@5	α-NDCG@10	ERR-IA@5	ERR-IA@10
M ² DIV	0.4429	0.4839	0.3445	0.3658
M ² DIV-LC	0.4551	0.4971	0.3509	0.3735
$DNN(\alpha$ -DCG)	0.4614	0.5005	0.3633	0.3838
DNN-LC(α -DCG)	0.4968^{*}	0.5322*	0.3868	0.4068
$DIN(\alpha$ -DCG)	0.4615	0.5041	0.3582	0.3808
DIN-LC(α -DCG)	0.5009 [†]	0.5294	0.3942^\dagger	0.4119
$GSF(\alpha$ -DCG)	0.4568	0.5023	0.3569	0.3802
GSF-LC(α -DCG)	0.4865	0.5219	0.3786	0.4003

• **Different approximation of** α -DCG

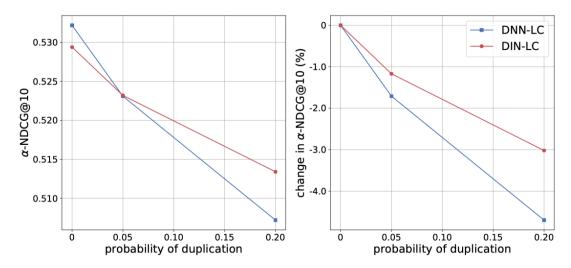
Method	α-NDCG@5	α-NDCG@10	ERR-IA@5	ERR-IA@10
α-DCG (T=0.1)	0.4968	0.5322	0.3868	0.4068
α-DCG (T=1.0)	0.4811	0.5184	0.3703	0.3912
α-DCG (T=0.01)	0.4715	0.4978	0.3633	0.3799
Gumbel- α -DCG	0.4970	0.5339	0.3855	0.4066

 $\mathcal{L}_{\text{Gumbel-}\alpha\text{-}\text{DCG}}(\{s_i^q\}) = \mathbb{E}_g[\mathcal{L}_{\alpha\text{-}\text{DCG}}(\{\beta(s_i^q + g_i)\})],$

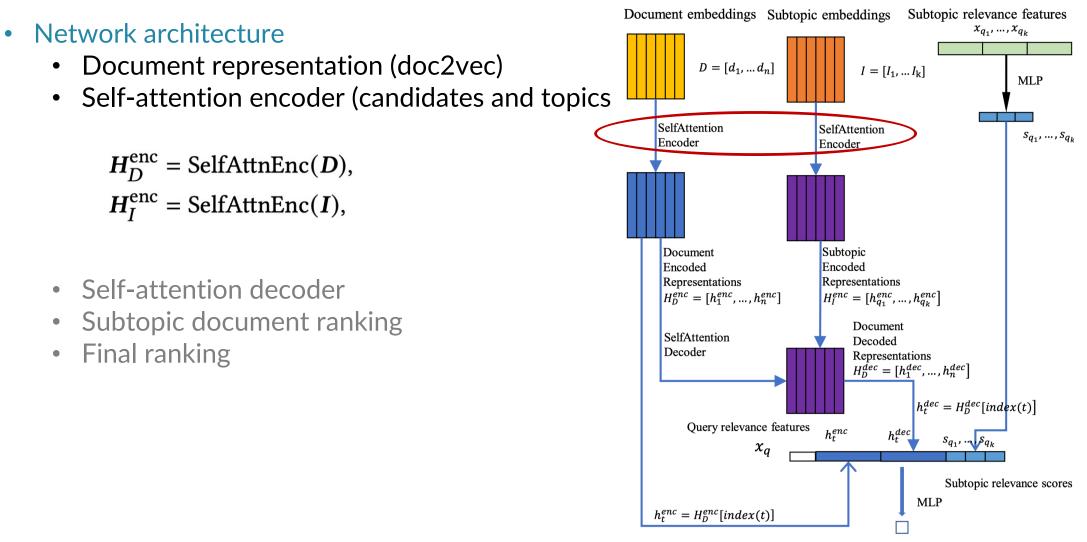
• Different SA layers

(L, H, z)	α-NDCG@5	α-NDCG@10	ERR-IA@5	ERR-IA@10
(1, 1, 256)	0.4724	0.5182	0.3679	0.3915
(1, 2, 256)	0.4761	0.5139	0.3706	0.3908
(1, 3, 256)	0.4893	0.5224	0.3801	0.3993
(1, 4, 256)	0.4895	0.5252	0.3810	0.4010
(2, 1, 256)	0.4918	0.5299	0.3842	0.4052
(2, 2, 256)	0.5009	0.5294	0.3942	0.4119
(2, 3, 256)	0.4902	0.5224	0.3800	0.3991
(2, 4, 256)	0.5066	0.5344	0.3950	0.4122
(2, 2, 128)	0.4931	0.5295	0.3842	0.4048
(2, 2, 64)	0.4908	0.5245	0.3796	0.3993

• Performance degradation on perturbed dataset



- Motivation
 - Leverage both novelty and relevance of documents at the same time as a whole sequence
 - Model the listwise interactions between the documents
- Major solution
 - Self-attentive network structure

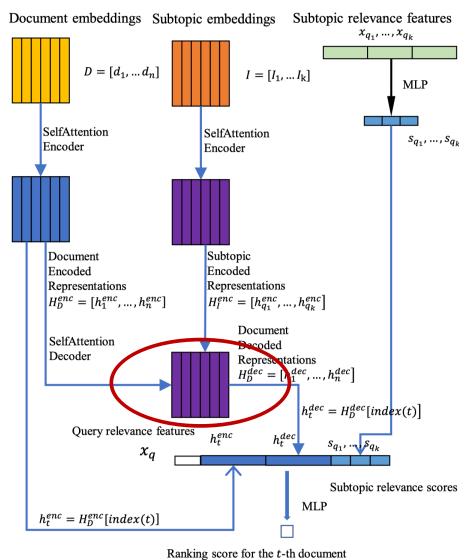


Ranking score for the t-th document

- Network architecture
 - Document representation (doc2vec)
 - Self-attention encoder (candidates and topics
 - Self-attention decoder

 $H_D^{\text{dec}} = \text{SelfAttnDec}(H_D^{\text{enc}}, H_I^{\text{enc}}),$ $h_t^{\text{enc}} = H_D^{\text{enc}}[\text{index}(t)],$ $h_t^{\text{dec}} = H_D^{\text{dec}}[\text{index}(t)],$

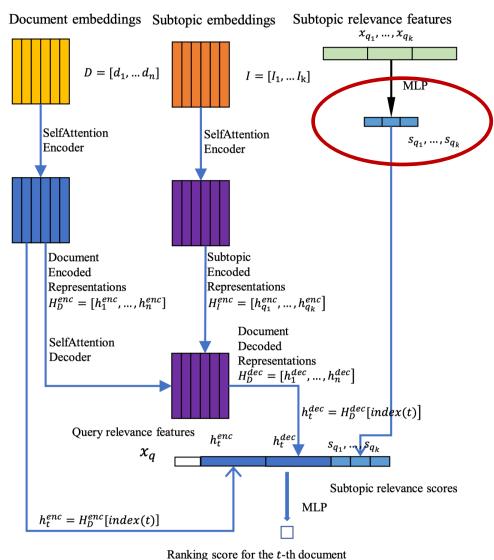
- Subtopic document ranking
- Final ranking



- Network architecture
 - Document representation (doc2vec)
 - Self-attention encoder (candidates and topics
 - Self-attention decoder
 - Subtopic document ranking

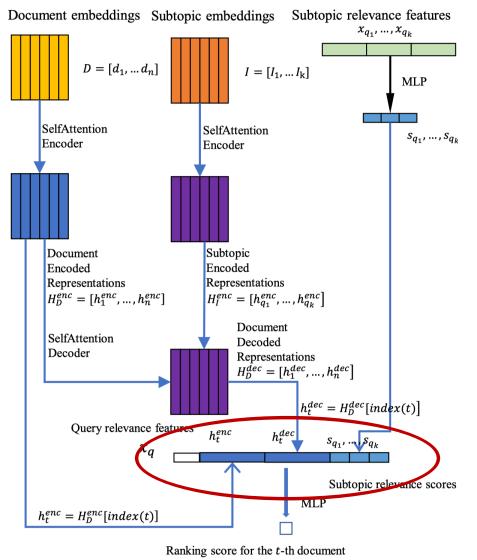
 $s_{q_i} = \boldsymbol{x}_{q_i}^T \boldsymbol{w}_r (i \in [1, k]).$

• Final ranking



- Network architecture
 - Document representation (doc2vec)
 - Self-attention encoder (candidates and topics
 - Self-attention decoder
 - Subtopic document ranking
 - Final ranking

$$\boldsymbol{v}_{d_t,q,q_i} = [\boldsymbol{x}_q; \boldsymbol{h}_t^{\text{enc}}; \boldsymbol{h}_t^{\text{dec}}; s_{q_1}, \dots, s_{q_k}],$$
$$s_t = \boldsymbol{v}_{d_t,q,q_i}^T \boldsymbol{w}_v.$$



Diversifying Search Results using Self-Attention Network. Qin et al. CIKM 2020.

- Training & Optimization Score of ranking list is $s_r = \sum_{i=1}^{|r|} s_i$.
 - List-pairwise sampling

$$Loss = \sum_{q \in Q} \sum_{s \in S_q} |\Delta M| [y_s \log(P(r_1, r_2)) + (1 - y_s) \log(1 - P(r_1, r_2))]$$

• The context-based pairwise loss function

$$s_{r_1} - s_{r_2} = s_{d_1} - s_{d_2},$$

 $P(r_1, r_2) = P(d_1, d_2).$

$$Loss = \sum_{q \in Q} \sum_{[C, (d_1, d_2)] \in S_q} |\Delta M| \text{LogLoss}(P(d_1, d_2)).$$

Diversifying Search Results using Self-Attention Network. Qin et al. CIKM 2020.

• Overall performance

•	Effects	of	different	settings
---	---------	----	-----------	----------

Methods	ERR-IA	α-nDCG	NRBP	Pre-IA	S-rec	S
Lemur	.271	.369	.232	.153	.621	L_{c}
xQuAD	.317	.413	.284	.161	.622	
PM2	.306	.411	.267	.169	.643	
HxQuAD	.326	.421	.294	.158	.629	L_{c}
HPM2	.317	.420	.279	.172	.645	L_{c}
R-LTR	.303	.403	.267	.164	.631	N
PAMM	.309	.411	.271	.168	.643	Re
R-LTR-NTN	.312	.415	.272	.166	.644	E
PAMM-NTN	.311	.417	.272	.170	.648	С
DSSA (doc2vec)	.350	.452	.318	.184	.645	
DESA	.363★	.464★	.332★	.184	.653★	

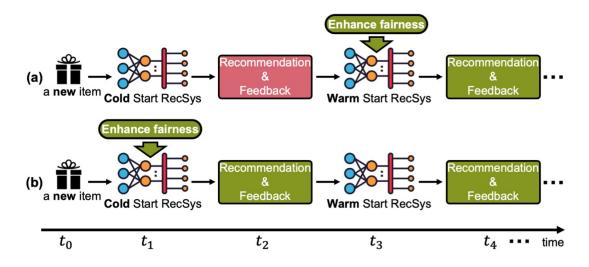
Settings	ERR-IA	α-nDCG	NRBP	Pre-IA	S-rec
$L_{\rm enc}$ =1, $L_{\rm dec}$ =1	.357	.457	.324	.183	.650
$L_{enc}=2, L_{dec}=1$.364	.464	.332	.184	.653
$L_{\rm enc}$ =3, $L_{\rm dec}$ =1	.355	.455	.323	.182	.654
$L_{\rm enc}$ =1, $L_{\rm dec}$ =2	.361	.462	.329	.182	.658
$L_{\rm enc}$ =2, $L_{\rm dec}$ =2	.358	.460	.324	.180	.658
No Subtopics	.344	.445	.311	.177	.648
Relevance Scores	.357	.458	.326	.183	.653
Encoded Subtopics	.364	.464	.332	.184	.653
Original Subtopics	.349	.453	.313	.180	.655

Fairness-aware Re-ranking

- Item fairness
 - Ensure each item/item group receives a fair proportion of exposure
 - Mitigating bias such as gender/politics, etc
- Neural fairness-aware methods are less explored
 - PLRank [Oosterhuis, 2021], FULTR [Yadav et al., 2021], GEN [Zhu et al., 2021]...

Fairness-aware Re-ranking: Fairness in Cold Start RS

- Motivation
 - The RS should treat different new items fairly in a cold-start scenario
 - Existing research focus on warm start scenario
- Solution
 - learnable post-processing framework



Fairness among New Items in Cold Start Recommender Systems. Zhu et al. SIGIR 2021.

Fairness-aware Re-ranking: Fairness in Cold Start RS

- Formalization of Fairness
 - Max-Min Opportunity Fairness
 - A model h^* is said to satisfy Max-Min Opportunity Fairness if it maximizes the true positive rate of the worst-off item

 $h^* = \arg \max_{h \in \mathcal{H}} \min_{i \in I_c} TPR(i)$

• The true positive rate of an item

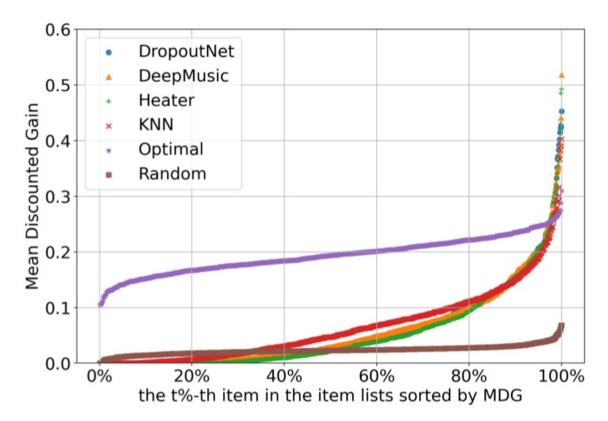
$$MDG_i = \frac{1}{|\mathcal{U}_i^+|} \sum_{u \in \mathcal{U}_i^+} \frac{\delta(\widehat{z}_{u,i} <= k)}{\log(1 + \widehat{z}_{u,i})},$$

MDG_i=0 means that item *i* is never recommended to matched users who like it during testing; MDG_i=1 means that *i* is ranked at the top position to all matched users during testing

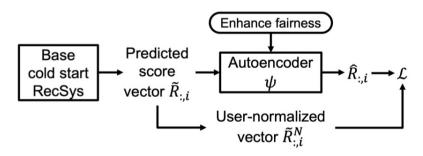
- Data-driven Study
 - Empirical results of four algorithms on ML1M

	Heater	DN	DM	KNN	Optimal	Random	
User utility	NDCG@15	.5516	.5488	.5312	.4402	1.000	.0550
	NDCG@30	.5332	.5316	.5167	.4226	1.000	.0586
Item utility	MDG-all	.0525	.0552	.0572	.0646	.1932	.0236
Fairness	MDG-min10%	.0000	.0000	.0000	.0001	.1388	.0118
	MDG-min20%	.0000	.0000	.0001	.0020	.1498	.0145
	MDG-max10%	.2272	.2294	.2323	.2091	.2471	.0386

- Data-driven Study
 - MDG of items in ML1M

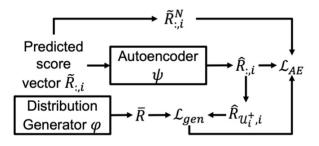


- Learnable Post-processing Framework
 - Requirement-1: promote under-served items so that their distributions of matcheduser predicted scores
 - Requirement-2: for every user, the predicted scores follow the same distribution

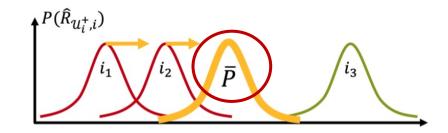


(a) The learnable post-processing framework.

- The Joint-learning Generative Method
 - Framework & Intuition



(b) The Gen method.

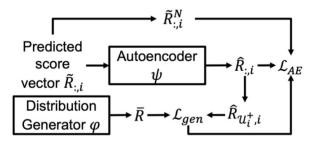


• 1st: Get the target distribution \overline{P}

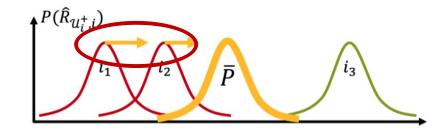
$$\begin{split} \min_{\varphi} \mathcal{L}_{gen} &= \sum_{i \in I_{w}} MMD(\overline{R}, \widehat{R}_{\mathcal{U}_{i}^{+}, i}) \\ &= \sum_{i \in I_{w}} \left(\frac{1}{S^{2}} \sum_{x, y=1}^{S} f(\overline{R}[x], \overline{R}[y]) - \frac{2}{S^{2}} \sum_{x=1}^{S} \sum_{y=1}^{S} f(\overline{R}[x], \widehat{R}_{\mathcal{U}_{i}^{+}, i}[y]) \right) \\ &+ \frac{1}{S^{2}} \sum_{x, y=1}^{S} f(\widehat{R}_{\mathcal{U}_{i}^{+}, i}[x], \widehat{R}_{\mathcal{U}_{i}^{+}, i}[y])), \end{split}$$

Fairness among New Items in Cold Start Recommender Systems. Zhu et al. SIGIR 2021.

- The Joint-learning Generative Method
 - Framework & Intuition



(b) The Gen method.



• 2nd: Update the autoencoder (the re-ranker)

$$\begin{split} \min_{\psi} \mathcal{L}_{AE} &= \sum_{i \in \mathcal{I}_{w}} (\|\widetilde{R}_{:,i}^{N} - \widehat{R}_{:,i}\|_{F} \\ &+ \alpha (MMD(\overline{R}, \widehat{R}_{\mathcal{U}_{i}^{+},i}) \cdot \delta(i \in \mathcal{I}_{UE}))) + \lambda \|\psi\|_{F}, \end{split}$$

- The Score Scaling Method
 - Intuition: up-scales the ratings of the unpopular items and down-scales ratings for popular items of high popularity

$$\widetilde{R}_{\mathcal{U}_{i}^{+},i}^{NS} = \widetilde{R}_{\mathcal{U}_{i}^{+},i}^{N} \times \frac{Max(\{Mean(\widetilde{R}_{\mathcal{U}_{j}^{+},j}^{N})^{\beta} | j \in \mathcal{I}_{w}\})}{Mean(\widetilde{R}_{\mathcal{U}_{i}^{+},i}^{N})^{\beta}},$$

• Train the autoencoder (the re-ranker) by the loss

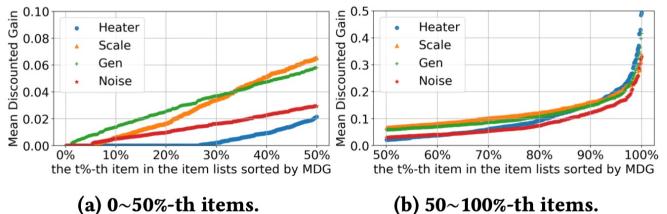
$$\min_{\psi} \mathcal{L}_{Scale} = \sum_{i \in I_{w}} \|\widetilde{R}_{:,i}^{NS} - \widehat{R}_{:,i}\|_{F} + \lambda \|\psi\|_{F}.$$

Overall Performance

	NDCG		MDG-all	Fairness: MDG			
	@15	@30		min10%	min20%	max10%	
Heater	0.5516	0.5332	0.0525	0.0000	0.0000	0.2272	
Noise	0.4240	0.4084	0.0482	0.0017	0.0046	0.1730	
Scale	0.5282	0.5135	0.0755	0.0015	0.0066	0.2025	
Gen	0.5379	0.5206	0.0719	0.0073	0.0136	0.2036	
DN	0.5488	0.5316	0.0552	0.0000	0.0000	0.2294	
Noise	0.4586	0.4420	0.0513	0.0010	0.0037	0.1876	
Scale	0.5315	0.5150	0.0766	0.0015	0.0069	0.2057	
Gen	0.5345	0.5175	0.0745	0.0075	0.0138	0.2055	
DM	0.5312	0.5167	0.0572	0.0000	0.0001	0.2323	
Noise	0.4406	0.4304	0.0543	0.0007	0.0032	0.1937	
Scale	0.5058	0.4946	0.0726	0.0010	0.0047	0.2140	
Gen	0.5144	0.5024	0.0730	0.0027	0.0071	0.2136	
KNN	0.4402	0.4226	0.0646	0.0001	0.0020	0.2091	
Noise	0.3450	0.3378	0.0591	0.0016	0.0053	0.1643	
Scale	0.4181	0.4027	0.0712	0.0023	0.0084	0.1791	
Gen	0.4158	0.4002	0.0724	0.0075	0.0140	0.1831	

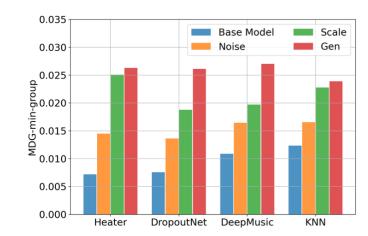
ness: MDG

•



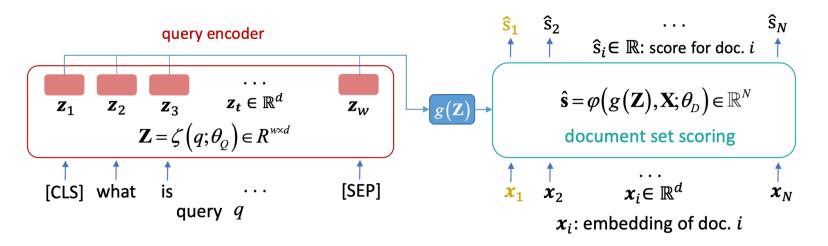
• Group-level fairness

MDG of all Items



Fairness among New Items in Cold Start Recommender Systems. Zhu et al. SIGIR 2021.

- Motivation
 - Mitigating societal bias in search results such as gender/politics biased results
- Structure



- Training Objective
 - Relevance loss

$$\mathcal{L}_{u}(\mathbf{y}, \hat{\mathbf{s}}) = D_{\mathrm{KL}}(\sigma(\mathbf{y}) \mid\mid \sigma(\hat{\mathbf{s}})) = -\sum_{i=1}^{N} \sigma(\mathbf{y})_{i} \log \frac{\sigma(\hat{\mathbf{s}})_{i}}{\sigma(\mathbf{y})_{i}}$$

• Neutrality loss

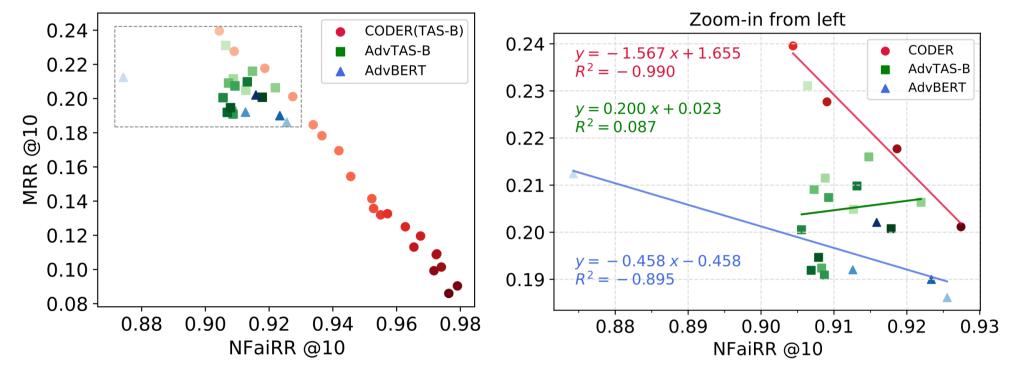
$$\mathcal{L}_{n} (\mathbf{y}_{n}, \hat{\mathbf{s}}) = D_{\mathrm{KL}} (\sigma(\hat{\mathbf{s}}) || \sigma(\mathbf{y}_{n})) = -\sum_{i=1}^{C} \sigma(\hat{\mathbf{s}})_{i} \log \frac{\sigma(\mathbf{y}_{n})_{i}}{\sigma(\hat{\mathbf{s}})_{i}}$$
$$\mathcal{L}_{\mathrm{tot}} = \mathcal{L}_{u} + \lambda_{r} \mathcal{L}_{n}$$

• Neutrality score (based on pre-defined protected words such as gender)

$$mag^{a}(d) = \sum_{w \in \mathbb{V}_{a}} \#\langle w, d \rangle \qquad \omega(d) = \begin{cases} 1, & \text{if } \sum_{a \in A} mag^{a}(d) \leq \tau \\ 1 - \sum_{a \in A} \left| \frac{mag^{a}(d)}{\sum_{x \in A} mag^{x}(d)} - J_{a} \right|, & \text{otherwise} \end{cases}$$

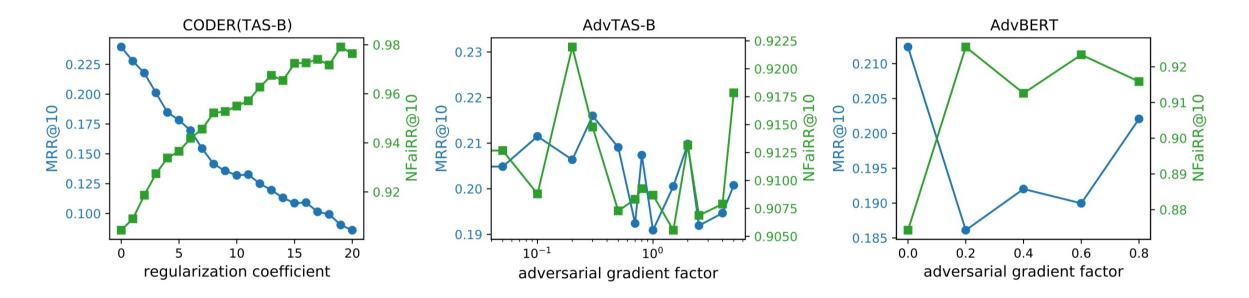
Mitigating Bias in Search Results Through Contextual Document Reranking and Neutrality Regularization. Zerveas et al.

Overall Performance



Mitigating Bias in Search Results Through Contextual Document Reranking and Neutrality Regularization. Zerveas et al.

- Controllable Regularization
 - The utility-fairness trade-off is more controllable and predictable



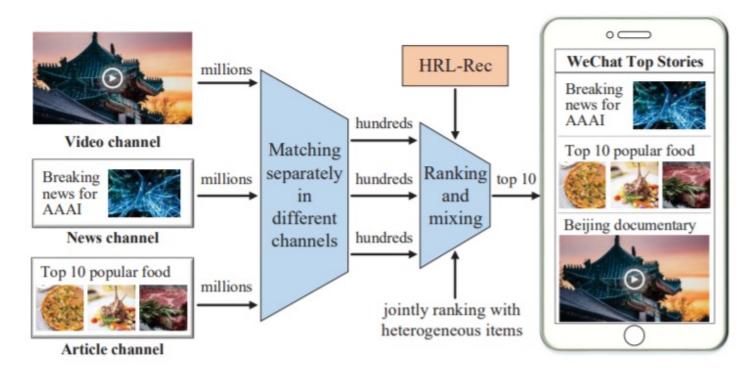
Outline

• Introduction

- Multi-stage recommender systems
- Neural re-ranking
- Single objective: Accuracy oriented
 - Learning by observed signals
 - Learning by counterfactual signals
 - LibRerank library
- Multi-objective
 - Diversity-aware re-ranking
 - Fairness-aware re-ranking
- Emerging applications
- Summary

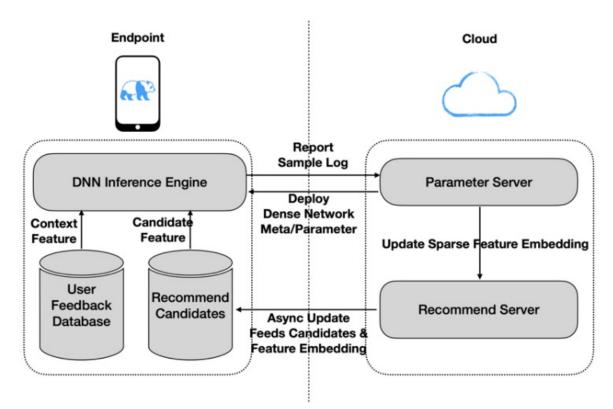
Emerging Applications: Integrated Re-ranking

- Display a mix of items from sources with heterogeneous features
- The input is extended from a single list to **multiple lists**
- RL or hierarchical self-attention structure



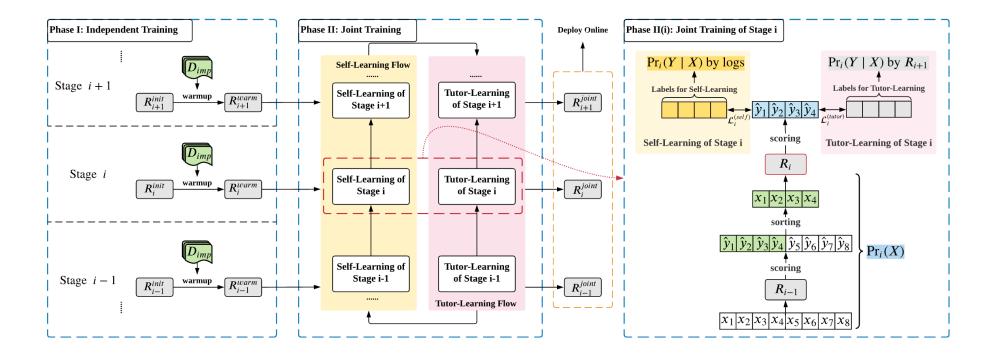
Emerging Applications: Edge Re-ranking

• EdgeRec: generates initial ranking lists on cloud, and conducts re-ranking with instant feedback on mobile devices



Emerging Applications: Jointly Optimization

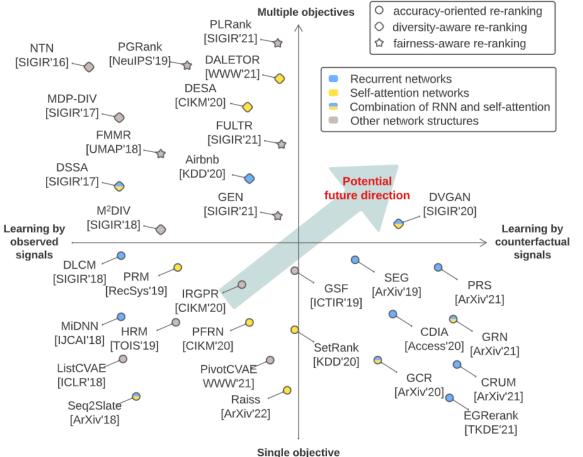
- Joint Optimization of Multi-Stage Cascade Systems
 - Ranking ↔ Re-ranking



Conclusion

Neural re-ranking has become a trending topic

- Learning by observed signals is **less noisy and easier to train**, but ignores other possible **permutations**
- Learning by counterfactual signals considers **all feasible permutations**, but the performance depends highly on the **quality** of the evaluator
- **Single objective** reranking model focus on the design of the listwise context modeling.
- **Multi-objective** reranking emphasize more on the balance between the objectives.



Future Directions

- Sparse feedback:
 - Only the feedback for the displayed lists can be observed
- Personalization for diversity/fairness:
 - Personalization is the core of recommender systems
 - Personalization for diversity/fairness remains less explored
- Tradeoff between multiple objectives:
 - Automatic balance between multiple objectives
- Diversity/fairness for integrated re-ranking:
 - Study the combined diversity effect for multiple channels
 - Explore the exposure fairness for multiple channels
- Model personalization and compression:
 - Each user has a personalized re-ranking model on the device
 - Edge models are required to be light weight and are low power consumption
- Joint training of multi-stage recommender systems:
 - Utilize information learned by other stages (e.g., parameter transfer, gradient transfer)

THANKS